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V

PREFACE

This book has been prepared as a textbook for use in the Introductory Physics courses
given in the �rst year of the Science, Engineering, Education and Medicine schools of
universities. It is calculus-based and can be taught entirely in two semesters.

Over the last decade, many universities around the world have been reducing un-
dergraduate degree credits in favor of Master’s degree programs. Introductory Physics
courses that once spanned 4 semesters were reduced to 2 semesters. Subsequently, a
serious problem arose in the use of standard textbooks. Of course, one cannot �nd fault
with the physics covered in these books, which I, too, have used in the past. However, it
is also a fact that they are not fully useful in Physics courses that have been shortened to
2 semesters with reduced hours. The main reason for this is the excessive volume of these
books. I have personally observed the panic and despair of students when they �rst see
these books, which run at least 1600 pages. Because of this volume problem, instructors
also have di�culty in deciding which parts they will teach, while still informing the
students about the omitted parts. Thus, the coherence and �ow of the text are lost.

Sometimes, less is more. You may consider this book as a trimmed-down version of
standard textbooks for a two-semester course. Whichever topics you choose to teach,
you will �nd the same calculus-based approach and the same essential concepts covered,
and all this without worrying about continuity and time limits.

THE BOOK’S APPROACH TO PHYSICS
No single book can be expected to meet the needs of each and every course, with their

varied aims and di�erent student bodies. I would like brie�y to explain the philosophy of
the book and answer other possibly relevant questions.

An important problem that holds back the teaching of physics in many universities
is that the calculus courses given in parallel with physics cannot keep abreast of it. Such
topics as integrals, vectors, di�erential equations, complex analysis, etc., come too late to
be useful. Hence, it is necessary to teach physics topics either by keeping mathematics at
a reasonable level or by developing some mathematics yourself.

In accordance with this viewpoint, the book develops some vital mathematics (inte-
grals and vectors) along the way and omits minor topics that require advanced mathe-
matics. However, in the treatment of each subject, care has been taken to ensure that the
conclusions and concepts reached are based on the fundamental laws of physics. Thus,
the student will be able to grasp the unifying concepts of physics and retain the results
without the need for memorization.

ABOUT USING THE BOOK
In accordance with the above understanding, the book’s distinctive features are:

(1) Each theoretical development in the book should be considered together with the
worked examples that follow. The examples extend the theory a little further, so that the
volume of the book and the duration of the lecture can be reasonable. For each topic, the
number of examples is more than you may need.
(2) Students’ ability to solve problems is an integral part of learning in physics. One can
avoid rote learning only by solving problems. For this purpose, problems and multiple-
choice questions are given at the end of each chapter, at a level that can be solved by
the student, and hence can be assigned as homework. The numerical answer to each
problem is given below it so that the student can easily check his/her own solution. In
this approach, the steps of solving are more important than the numerical result.

Lastly, I want to address the students: You live in a wonderful World, rich in detail,
sometimes enigmatic, but sometimes dangerous as well. The least you can do is to be
aware of its basic laws, knowledge that can take you to new heights of understanding
and wisdom.
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1
UNITS AND VECTORS

The Russian Soyuz spaceship
and the Earth in the background
as viewed from the International
Space Station (ISS). These two
spaceships docked at 400 km al-
titude from the ground in Jan-
uary 2011.
The taking of this picture may
have lasted one second, but it
was only made possible with
centuries of development in
Physics.

1.1 DIMENSIONS AND UNITS

The natural sciences started with measurement. According to historians,
measurement may have started in around 3000 BC in Ancient Egypt. The Nile
river used to �ood and �elds would become submerged. There then arose the
problem of �nding the former boundaries of the �elds after the �ood withdrew.
You may easily guess how they solved this problem: They �rst identi�ed a �xed
rock or a tree, and then they agreed on a unit of length. They measured and
recorded the distance of the �eld boundaries to the origin in terms of this unit.

You can see the overall structure of measurement from this example:
First, we observe physical quantities that describe a physical property or

condition, such as distance, area, speed, force, pressure . . . .
These physical quantities have dimensions, i.e., common characteristics

with respect to measurements: For example, although width, length, diameter,

1© Springer Nature Switzerland AG 2020 
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2 1. UNITS AND VECTORS

perimeter, etc., are di�erent, their common aspect is that they are a kind of length,
i.e., they have the dimension of length. Let’s take a look at some examples:

Physical quantity Dimension
distance, width,
depth, length . . .

}
length

day, month, year,
season, period,. . .

}
time

The dimension of certain quantities can be expressed in terms of more basic
dimensions. For example:

Surface area = width×length = (length)2

Volume = width×length×height = (length)3

Then, a dimension standard or unit is established for each dimension. For
example, various units such as yards, leagues, meters, feet, etc., have been used
throughout history for the dimension of length.

The act of measurement is thus the act of determining the amount that a
physical quantity corresponds to in terms of its own dimensional standard, i.e.,
unit. For example, to measure the width or length of a table, we take a meter ruler
and count how many units the length of the table takes: 3.45 meters, 0.86 meters,
etc.

We must emphasize one important point here: The result of each measurement
should be expressed in terms of units. Although, in daily life, one may say, “My
height is 1.67", this is actually incorrect, the correct expression being “my height
is 1.67 meters".
The International System of Units (SI)

Which units among many should be accepted as the basic units? This se-
lection has di�ered over various countries throughout history. However, to-
day, the internationally accepted International System of Units (SI = Systeme
Internationale), formerly known as the MKS System of Units, is used.

The SI System of Units consists of 7 basic units. All physical quantities can
thus be completely expressed and measured in terms of these basic units.

The basic units of the SI system
Dimension Unit Abbreviation
Time second s
Length meter m
Mass kilogram kg
Electrical current ampere A
Temperature kelvin K
Light magnitude candela cd
Amount of matter mole mol

Three of these units, the Meter, the Kilogram and the Second are su�cient
for mechanical topics. The other units shall be de�ned in due course.

Now let us de�ne these basic units:
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• Meter : The distance traveled by light in vacuum in 1/299 792 458 seconds.
• Second : 9 192 631 770 times the vibration period of the Cs133 atom.

Note that these two units are de�ned with atomic methods. The units of meter
and second were de�ned di�erently in the past: The meter was taken as a
fraction of the length of the meridian or the length of a special platinum stick
stored in France. Likewise, fractions of the Earth’s movement around the Sun
(year) or around its own axis (day) were used for the second. However, these
became insu�cient as the precision of measurements in science gradually
increased. Atomic de�nitions are both very precise and are repeatable at
anywhere around the world without the necessity of traveling to France.

Figure 1.1: The laser assembly
that determines the meter unit
(left). The cesium atomic clock
that provides the second unit
(center). The platinum-iridium
cylinder stored in France as the
kilogram standard (right).

• Kilogram: The mass of a cylindrical prototype of the platinum-iridium alloy
manufactured in 1889 and stored at the Bureau International des Poids et
Mesures (BIPM) institution in Paris.

Now, this was true until 2019. However, variations up to 50 micrograms
were observed between this prototype and the copies sent to other countries
over the many years that passed. After long discussion, it was decided to
de�ne it in terms of the Planck constant h arising in phenomena at the
atomic scale. Accordingly, once the Planck constant is de�ned as

h = 6.62607015 × 10−34 kg.m2/s

the kilogram is then de�ned in terms of meters or seconds. The new atomic
de�nition became valid as of May 2019. But it will take a long time to
implement it in laboratories, hence the prototypes will still be in use.

Prefixes for Multiples and Fractions
Exponents are used in the scienti�c representation of numbers. For example,

1 350 000 is expressed as 1.35 × 106 or 0.000047 as 4.7 × 10−5 . However, it is
di�cult to express this in daily verbal language. Instead, fractions and multiples
may easily be expressed by placing pre�xes before each unit. The most commonly
used pre�xes are shown in the following table:

Multiples Fractions
name symbol quantity name symbol quantity

kilo k 103 milli m 10−3

mega M 106 micro µ 10−6

giga G 109 nano n 10−9

tera T 1012 pico p 10−12

peta P 1015 femto f 10−15
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These pre�xes have entered daily life: Examples include kilometer (km),
gigahertz (GHz) and terabyte (TB).
Derived Units

The 3 basic units (meter, kilogram and second) mentioned above are su�cient
to derive the units of all other quantities in mechanics. Here are some examples:

Some derived units
quantity de�nition unit abbreviation

Area width×length (meter)2 m2

Volume width×length×height (meter)3 m3

Speed distance/time meters/second m/s
Acceleration speed/time meters/(second)2 m/s2

Force mass×acceleration kilogram×meter/(second)2 kg·m/s2

Work force×distance kilogram×meter2/(second)2 kg·m2/s2

Consistency of Units
It is not su�cient merely to have the same numbers on both sides of the

equation in a physical formula. The dimensions and units must also be consistent.
In other words, “you cannot compare apples and oranges."

Only the quantitieswith the samedimension can appear on both sides
of physical formulas.

For example, let us take a look at the accelerated motion formula you know
from high school:

x = v0 t + 1
2 a t2

The left-hand side of this equation has the dimension of length. Thus, each of the
terms on the right-hand side must also have the length dimension. Let us plug in
the dimensions of each quantity explicitly:

meter =
meter
��
��second ×�

���second +
meter
���

�second2 ×�
���second2 = meter

This gives us a clue from the start about whether or not the formula is consistent.
We shall reconsider examples on units in the next section after learning how

to carry out numerical calculations.
Other Systems of Units

It will be useful to know two systems of units other than SI.
• In the CGS system, the basic units are cm, gram and second. It is easy to

convert into the SI system.
• The Imperial System of Units is used in the Anglo-Saxon world; and, with

slight di�erences, in the United States. The unit of length is the foot, the unit
of mass is the pound and the unit of time is the second. The fraction of the
unit of length is the inch and the multiples are the yard and the mile.

These units are converted into the SI system using the following formulas:

1 foot (ft) = 12 inch (in) = 0.3048 meter
1 pound (lb) = 16 ounce (oz) = 0.453 kg
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1.2 PRECISION AND SIGNIFICANT FIGURES

The degree of precision is the degree of closeness of measurement of a
quantity to that quantity’s true value. The precision is limited by the capability
of the measuring instruments. The di�erence between the real value and the
measured value of a quantity is called the margin of error. Each measurement
has a margin of error.

In science and engineering, the results of measurements and calculations
should be expressed properly by taking into consideration the margin of error.
In other words, they should be given with the correct number of signi�cant
�gures. For example, it would be incorrect to express the result of weighing
an item on a grocery store scale as 352.8461 grams or the result of a distance
measurement with a ruler as 25.87346 cm .
Absolute Error – Relative Error

The minimum interval measurable by a measuring apparatus is called the
absolute error. Consider that you are measuring the length of your book using
a ruler. The smallest division on the ruler is 1 millimeter. It is not possible to
measure lengths smaller than a millimeter using this ruler (Figure 1.2). Therefore,
the absolute error of the measurements with this ruler is ∆L = 1 mm . (Actually,
the absolute error of a ruler is 0.5 mm , as it is possible to see further as to which
side the reading is closer. We will take it as 1 mm here for the sake of simplicity.)

Figure 1.2: The red rectangle
measures somewhere between
1.7 and 1.8 cm long. Here, the
absolute error is 1 mm since that
is the smallest division we can
see.

For example, let the measured length of the book be L = 294 mm . Then, the
measurement result can be expressed as follows, taking into consideration the
margin of error:

L ± ∆L = 294 ± 1 mm

Accordingly, the length will be within the range (293 mm < L < 295 mm) .
The ratio ∆x/x is called the relative error, and it is expressed in terms of

percentage (%). For example, if the mass of an object is given as m = (35 ± 1) g ,
its relative error is calculated as follows:

∆m
m

=
1

35
= 0.029 ≈ 3 %

Both absolute and relative errors propagate when calculations are made with
these measurements. For example, after measuring the width, length and height
of the book using the aforementioned ruler, it will be necessary to calculate the
volume V of the book and again provide a V ± ∆V margin of error.

How do errors propagate in calculations? There are two simple rules for
calculating the margin of error in the results:
• In additions and subtractions, absolute errors are added:

z = a ± b =⇒ ∆z = ∆a + ∆b

• In multiplications and divisions, relative errors are added:

y =

{
ab
a/b

=⇒
∆y

y
=

∆a
a

+
∆b
b

These two rules are su�cient to �nd the margin of error in complex calculations.
For example, the margin of error in the expression z = a3 (b + c)2 is found as



6 1. UNITS AND VECTORS

follows:

z = a3 (b + c)2

∆z
z

=
∆(a3)

a3 +
∆(b + c)2

(b + c)2

=

[
∆a
a

+
∆a
a

+
∆a
a

]
+

[
∆(b + c)

b + c
+

∆(b + c)
b + c

]
∆z
z

= 3
∆a
a

+ 2
∆b + ∆c

b + c

It is also possible to guess the margin of error from the expression of data.
For example, if two separate mass measurements are given as 45 g and 45.0 g ,
this means that, in the �rst measurement, nothing is known after the last digit,
in other words, the absolute error is ∆m = 1 g . In the second measurement, the
decimal of gram was also measured and found to be 0, in other words, absolute
error is ∆m = 0.1 g .
Significant Figures

The precision of physical data is not always given by its absolute error. Some-
times it is understood from the number of signi�cant �gures expressing the
data.

For example, if the mass of an object is given as 76.4 g , the number of signi�-
cant �gures is 3. Nothing changes when we express this as 0.0764 kg ; the number
of signi�cant �gures is still 3. The number of signi�cant �gures of a number is
found without taking into consideration the leading zeros. For example,

1.2398 Number of signi�cant �gures: 5

0.00000039 Number of signi�cant �gures: 2

3.00007 Number of signi�cant �gures: 6

2.70 Number of signi�cant �gures: 3

(Notice, on the last row, that the zero on the right-hand side was written explicitly.
This means it was measured and found to be zero. Hence, the number of signi�cant
�gures is 3.) The higher the number of signi�cant �gures, the more precisely that
quantity is known.

How many signi�cant �gures should be kept in the result after arithmetic
operations are carried out with two numbers? For example, if a moving object
travels 8.0 meters in 3.0 seconds , the speed value goes on as v = 8.0/3.0 =

2.6666 . . . . Where should we cut this value?
There are, again, two simple rules for keeping the correct number of signi�cant

�gures in calculation results:
• In additions and subtractions, the lowest of the number of decimal

places is kept:
3.2339 + 5.4 = 8.6339 = 8.6

9.12 − 5.4917 = 3.6283 = 3.63

(In the last row above, the round o� rule was applied when discarding two
digits. According to this rule, if the �rst number of the discarded part is 5
or greater, the last kept number is rounded up. Here, the �rst number of the
discarded part is 8, hence the last kept number was rounded up from 2 to 3.)
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• In multiplications and divisions, the lowest number of signi�cant
�gures is kept:

3.4567 × 2.7 = 9.33309 = 9.3

15.67 × 0.00012 = 0.0018804 = 0.0019

Of course, the natural numbers (1, 2, 3, 4 . . . ) that are used for counting do
not a�ect the number of signi�cant �gures. For example, if the mass of a book is
285.6 g , then the mass of 3 books is 3 × 285.6 = 856.8 g , in other words, it does
not lose any decimal places.

According to these rules, the speed of the object in the example above should
be taken as v = 8.0/3.0 = 2.666666 . . . = 2.7 m/s . In this course, we shall
adopt the following rule: The number of signi�cant �gures shall be taken as 3 in
intermediate calculations and 2 in results unless speci�ed otherwise.

Example 1.1

The dimensions (a, b) of a carpet are given in two di�erent
ways:
(a) a = (5.2 ± 0.1) m and b = (8.3 ± 0.2) m . Calculate the

surface area of the carpet and give the result with a margin
of error.

(b) Dimensions are given only as a = 5.2 m and b = 8.3 m .
Once again, calculate the surface area and give the result
with the correct number of signi�cant �gures.

Answer
(a) First, calculate the surface area of the carpet:

A = ab = 5.2 × 8.3 = 43.16 m2

The relative error formula for multiplication is used:

∆A
A

=
∆a
a

+
∆b
b

∆A
43.2

=
0.1
5.2

+
0.2
8.3

= 0.043

∆A = 43.2 × 0.043 = 1.87 ≈ 2 m2

In the last row, we reduced the surface area error down to
one digit, because the width and length margins of error had
one digit. Accordingly, the surface area of the carpet, with
its margin of error, is written as:

A ± ∆A = (43 ± 2) m2

(b) The number of signi�cant �gures of the width and length
is two. Accordingly, only 2 signi�cant �gures are kept in the
product of the two:

A = ab = 5.2 × 8.3 = 43.16 ≈ 43 m2

Example 1.2

The speed of an automobile is given as 34 mph (miles/hours).
Calculate the speed in terms of km/hour and m/s . (1 mile =

1 609 m ).

Answer
Speed is given with 2 signi�cant �gures. Thus, the results

shall be kept with 2 signi�cant �gures as well. If 1 mil =

1.609 km ,
34 mph = 34 × 1.609 = 54.706 = 55 km/hour

Likewise, if 1 hour = 60 minutes and 1 minute = 60 seconds ,

55 km/hour =
55 × 1000

3600 s
= 15.27 = 15 m/s

Example 1.3

The conversion of mass into energy is calculated with Einstein’s
famous formula:

E = m c2

Here, c = 2.997925×108 m/s is the speed of light, E is energy
and its unit is joule (J) in the SI system. (1 J = 1 kg·m2/s2 ).

Calculate the energy of 1.0 gram of material.

Answer
The number of signi�cant �gures of the material m = 1.0 g
is 2, taking into account the zero on the right. Therefore, the
result should be given with 2 signi�cant �gures. Knowing
this, it will be su�cient to round the speed of light down to 3
digits:

E = mc2 = (1 × 10−3 kg) × (3.00 × 108)2

E = 9.0 × 1013 J
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1.3 VECTORS

Physical quantities can be divided into two distinct groups with respect to
measurement: Some quantities can be completely speci�ed just by giving a nu-
merical value. We call these scalars. For example, saying “the temperature of this
room is 18◦ degrees” or “the mass of that table is 25 kg” is su�cient. Quantities
of the scalar type include mass, energy, volume, temperature, electrical resistance,
refractive index, etc. Scalars can be manipulated by algebraic calculations.

For certain quantities, merely giving a numerical value is not su�cient; one
should also specify its direction. For example, when we say, “the speed of this
ship is 10 km/hour", they will ask us: “But 10 km/hour in which direction?” If
we reply, “10 km/hour in the north-east direction,” we will have fully speci�ed
the velocity of the ship.

Quantities that have both a magnitude and a direction are called vectors. Vec-
tors are manipulated according to certain rules of addition. Velocity, acceleration,

Figure 1.3: Notation of the ~A
vector.

force, momentum, electric �eld, etc., are among vector quantities. Vectors are
shown with an arrow (→ ) over letters, such as ~A, ~F . . . .

The magnitude (or, the norm) of a vector is a positive scalar number shown
as |~A| or, brie�y, as A .

In diagrams, a vector is represented by an arrow drawn in the direction of
the vector. The length of the arrow is a measure of the magnitude of the vector.
Multiplication of a Vector with a Scalar Number

The product of the number c and the vector ~A is the vector c~A which has a
magnitude of cA .

~A and c~A are in the same direction if c is positive,
c~A is in the opposite direction if c is negative.

For example, the vector 3~A is shown with an arrow that is 3 times as long in the
direction of the vector ~A whereas the vector −2~A is shown with an arrow twice

Figure 1.4: Vectors ~A, 3~A and
−2~A .

as long in the opposite direction (Figure 1.4).
Addition of Two Vectors

Vectors are not added by rules of arithmetic, because these are quantities with
directions. For example, when a ship is displaced 3 km to the east and then 4 km
to the north, its total displacement is not 3 + 4 = 7 km , but only 5 km. Therefore,
vector algebra is di�erent from scalar numbers and all algebraic operations must
be rede�ned.

The vector ~A + ~B , which is the sum of vectors ~A and ~B is de�ned with the
triangle rule or the parallelogram rule. These rules are shown in Figures 1.5 and
1.6.

Figure 1.5: The parallelogram
rule

In the parallelogram rule, the two vectors are �rst shifted by preserving
their directions such that both of their tail points are in the same location. Then,
a parallelogram is formed by drawing lines from the head points of each vector
parallel to the other. The diagonal between the vectors of this parallelogram is
the vector ~A + ~B .
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Figure 1.6: The triangle rule.

In the more useful triangle rule, one of the vectors ( ~A or ~B ) is shifted in
parallel to itself to the head point of the other vector (Figure 1.6). The vector
drawn from the tail of the �rst vector ( ~A ) to the head of the second vector (~B ) is
~A + ~B .

Figure 1.7: (a) Adding many vec-
tors is easier using the triangle
rule. (b) What do you think the
sum of these �ve vectors would
be?

Both rules give the same result. However, the parallelogram rule is not
suitable for adding more than two vectors, as things immediately get complicated.
However, the sum of more than two vectors can be drawn immediately using
the triangle rule (Figure 1.7a). After the vectors are lined up head-to-tail, it is
su�cient to draw a vector from the tail of the �rst vector to the head of the last
vector.
Vector Subtraction

Vector subtraction is performed using the same rule. The di�erence ~A − ~B is
nothing but the sum of the vectors ~A and −~B :

Figure 1.8: Di�erence of two
vectors.~A − ~B = ~A + (−~B) (1.1)

Observing Figure 1.8, you will notice that the head of the vector ~A − ~B ends at
the positive-signed vector (+~A ).

Example 1.4

Use the triangle rule to calculate the following for the vectors
~A, ~B, and ~C shown above:
(a) the sums ~A + ~B and ~B + ~C ,
(b) the di�erences ~A − ~B and ~C − ~B .

Answer
According to the triangle rule, one of the two vectors is shifted
in parallel to itself until it comes into contact with the tail
point of the other vector. The vector drawn from the tail of
the �xed vector to the head of the shifted vector is the sum.
These sum vectors are shown below:

(b) The di�erence of two vectors is written as ~A−~B = ~A+(−~B)
and turned into a sum. Here, the vector −~B is in opposite
direction to ~B . The results shown in the following �gure are
obtained when the triangle rule is applied again:
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Components of a Vector
Vector components are de�ned in order to perform addition and other vector

operations algebraically and not graphically. The components are simply algebraic
numbers.

Consider the familiar rectangular coordinate system on the plane. We call
this the cartesian coordinate system. This system consists of an origin O and
two coordinate axes denoted as x - and y -. Positive coordinates are located in
the half of the axes between the origin and the direction of the arrow, and the
negative coordinates are located in the other half.

Let us draw parallel lines from the head points of the vector ~A to the x - and
y - axes (Figure 1.9).

Figure 1.9: Components of a
vector ~A .

The lengths intersected by these parallels are the x - and y -components of
the vector ~A and are indicated with Ax and Ay respectively. This is shown as,

~A : (Ax, Ay)

Now, the components themselves can be used to specify the vector, instead of
magnitude and direction.

More generally, in three-dimensional space with three coordinate axes x -, y -
and z - the components are de�ned as follows: A perpendicular is dropped from
the head of ~A onto the xy -plane. At the intersection point, two lines are drawn
parallel to the x - and y -axes. The lengths that these parallels intersect with the
axes constitute the Ax and Ay components of the ~A vector. The perpendicular
drawn down to the plane or its projection on the z -axis is the Az component:

Figure 1.10: Vector compo-
nents in 3 dimensions. ~A : (Ax, Ay, Az)

Now let us �nd the formula that gives us the components of a vector ~A in
a plane. Let the magnitude of this vector be A and its angle with the +x axis
be θ . The positive direction of the angle θ is accepted as the anticlockwise rotation
direction.

Let us remember the trigonometric formulas of a right triangle:

sin θ =
b
c
, cos θ =

a
c
, tan θ =

b
a

(1.2)

Applying these formulas to the components of ~A (refer to Figure 1.9), we get
Figure 1.11: Right triangle.

cos θ =
Ax

A
−→ Ax = A cos θ

sin θ =
Ay
A

−→ Ay = A sin θ

In the opposite case, if the components are given, the magnitude and direction
of a vector are found with the following formulas (remember the Pythagorean
formula):

A =

√
A2

x + A2
y

tan θ =
Ay
Ax
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We can thus use these formulas to specify a vector either in terms of its compo-
nents or in terms of its magnitude and direction.

Let us summarize these important formulas together:

Ax = A cos θ A =

√
A2

x + A2
y

Ay = A sin θ tan θ =
Ay
Ax

(1.3)

Notice on calculating the angle θ : The expression for tan θ in formula (1.3)
may not always give the correct result when θ is calculated as an inverse trigono-
metric function on a calculator. It may sometimes give the complement of that
angle, because (−3)/4 and 3/(−4) have the same value of −0.75 for the calcula-
tor.

However, the result of the calculator can be corrected if the signs of the
components Ax and Ay are taken into account separately. For example, if Ax =

−3, Ay = 4 then the vector ~A is in the 2nd quadrant, in other words, [90◦<θ<
180◦] . Likewise, if Bx = 2, By = −5 then the vector ~B is in the fourth quadrant,
in other words, [−90◦<θ<0◦] . (It is incorrect to say that [270◦<θ<360◦] here;
angles greater than 180◦ are measured from the negative side.)

Example 1.5

Find out the components of the vectors ~a, ~b, ~c and ~d shown in
the �gure. (Each division has a unit of 1 .)

Answer
You can read from the graph by taking note of the signs of
the components:

ax = 5 ay = 2
bx = 7 by = −2
cx = −4 cy = 0
dx = −3 dy = −2

Example 1.6

Calculate the components of the vectors ~A, ~B, ~C and ~D whose
magnitudes and angles are shown below. (You may use Ap-
pendix C at the end of the book for unknown sinus and cosine
values.)

Answer
We use formulas (1.3), taking care to measure the angles anti-
clockwise from the +x axis:

Ax = A cos(90 − 30)◦ = 10 × cos 60◦ = 10 × 0.5 = 5
Ay = A sin 60◦ = 10 × 0.87 = 8.7

Bx = B cos(90 + 53)◦ = 6× (− cos 37◦) = −6×0.8 = 4.8
By = B sin(90 + 53)◦ = 6 × sin 37◦ = 6 × 0.6 = 3.6

Cx = −C cos 25◦ = −8 × 0.91 = −7.3
Cy = −C sin 25◦ = −8 × 0.42 = −3.4

If a vector is on one of the axes, this means its other compo-
nent is zero:

Dx = 0 and Dy = −3

Example 1.7

The components of the vectors ~F and ~G are given as follows:
Fx = 3, Gx = −5
Fy = −4, Gy = −12

Find the magnitudes and directions of these vectors.

Answer

We use Eqs. (1.3) that give magnitude and direction,
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F =

√
F2

x + F2
y =

√
32 + (−4)2 = 5

tan θ =
Fy

Fx
=
−4
3

= −1.33

Two angles with tangents equal to -1.33, are +127◦ and −53◦ .
We decide which is correct by taking into account the signs
of the components. Since ~F has a negative y-component, this
angle must be in the 4th quadrant. Therefore, the answer is

θ = −53◦ .
We use the same method in calculating ~G :

G =
√

(−5)2 + (−12)2 = 13

tan θ =
−12
−5

= 2.4

Two angles with tangents equal to 2.4 are +64◦ and −113◦ .
This angle is in the 3rd quadrant, as both components of ~G
are negative. Therefore, the answer is θ = −113◦ .

Unit Vectors
Vectors of unit length (1) are de�ned along the coordinate axes in order to be

able to manipulate vectors easily. First, the ı̂ vector of unit length is taken along
the x -axes in the positive direction. Let us write its components:

ı̂ : (1, 0, 0)

Here, the hat ( ˆ ) sign is used to denote that a vector has a unit length. A unit
Figure 1.12: Unit vectors. vector can be de�ned for every vector. For example, when we write Â , we

understand the unit vector in the direction of ~A .
Likewise, the unit vector in the direction of the y -axis is de�ned as ̂ and

the unit vector along the z -axis is de�ned as k̂ . And their components are as
follows:

̂ : (0, 1, 0) , k̂ : (0, 0, 1)

Now let us construct a vector ~A on a plane using what we have learned so far.
First, let us try to see what the Ax ı̂ product is (Figure 1.13). This is a vector of
unit length multiplied with the number Ax . Its magnitude is Ax and its direction
is ı̂ , in other words, in the direction of the +x -axis. Likewise, the product Ay ̂ is
a vector in the +y direction with length Ay .

Now let us look at the sum of these two vectors: Placing these end-to-end
starting from the origin, we get the ~A vector according to the triangle rule:

Figure 1.13:
~A = Ax ı̂ + Ay ̂

This expression can easily be generalized to three-dimensional space:

~A = Ax ı̂ + Ay ̂ + Az k̂ (1.4)

This expression will be used quite often. When vectors are written in this form,
all addition and multiplication operations performed on vectors can be carried
out as arithmetic operations on the components. Likewise, the components of
the vectors given in such form can be identi�ed immediately. For example, the
expression

~D = 3ı̂ − 5 ̂ + 6 k̂
↓ ↓ ↓

Dx Dy Dz

shows us that Dx = 3, Dy = −5, and Dz = 6 .
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Addition Using Vector Components

Let us write two vectors such as ~A and ~B in terms of their components and
unit vectors:

~A = Ax ı̂ + Ay ̂ + Az k̂
~B = Bx ı̂ + By ̂ + Bz k̂

Using them, let us form the vector ~C = ~A + ~B :

~C = ~A + ~B
= (Ax ı̂ + Ay ̂ + Az k̂) + (Bx ı̂ + By ̂ + Bz k̂)

= (Ax + Bx)ı̂ + (Ay + By) ̂ + (Az + Bz)k̂
~C = Cx ı̂ + Cy ̂ + Cz k̂

Comparing the last two rows, we see that the sum of two vectors is a vector whose
components are the arithmetic sum of the corresponding components of the two
vectors. In other words,

~C = ~A + ~B ⇐⇒


Cx = Ax + Bx

Cy = Ay + By
Cz = Az + Bz

(1.5)

Working on components through the use of conventional addition and subtraction
is much easier than using graphical methods. This method also applies to vector
expressions with more than two vectors or those multiplied with scalars.

Example 1.8

The vectors ~A = 3ı̂ − 4 ̂ + 7 k̂ , ~B = 2ı̂ − 3 k̂ and ~C = 8 ̂
are given.
(a) Find the components of each vector.
(b) Calculate the sum ~A + ~B and the di�erence ~B − ~C .
(c) Calculate the expression 3~A − 8~B + 9~C .

Answer
(a) The coe�cients of the unit vectors ı̂, ̂ , k̂ are the x -,y -
and z -components respectively. The components are identi-
�ed from the given expressions:

Ax = 3 Ay = −4 Az = 7

Bx = 2 By = 0 Bz = −3
Cx = 0 Cy = 8 Cz = 0

(b) When making additions and subtractions using compo-
nents, the coe�cients of unit vectors are algebraically added
or subtracted:

~A + ~B = (3ı̂ − 4 ̂ + 7 k̂ ) + (2ı̂ − 3 k̂ )
= 5ı̂ − 4 ̂ + 4 k̂

~B − ~C = (2ı̂ − 3 k̂ ) − (8 ̂ ) = 2ı̂ − 8 ̂ − 3 k̂
(c) Likewise, the coe�cients are calculated using algebraic
rules:

3~A− 8~B+ 9~C = 3(3ı̂− 4 ̂ + 7 k̂ )− 8(2ı̂− 3 k̂ ) + 9(8 ̂ )
= −7ı̂ + 60 ̂ + 45 k̂

Example 1.9

The magnitudes and directions of the vectors ~A and ~B are
given in the �gure.
(a) Calculate the components and express these two vectors in

terms of unit vectors,
(b) Calculate the vector ~R which is ~R = 3~A − 2~B .
(c) Find the magnitude and direction of the vector ~R .

Answer
(a) The components:

Ax = 5 cos 53◦ = 3 Ay = 5 sin 53◦ = 4
Bx = −8 cos 37◦ = −6.4 By = −8 sin 37◦ = −4.8

Accordingly, in terms of the unit vectors:
~A = 3ı̂ + 4 ̂
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~B = −6.4ı̂ − 4.8 ̂

(b) The vector ~R is calculated as follows:
~R = 3~A − 2~B = 3(4ı̂ + 3 ̂ ) − 2(−6.4ı̂ − 4.8 ̂ )
~R = 21.8 ı̂ + 21.6 ̂

(c) The magnitude of the vector ~R is calculated as follows:

R =

√
R2

x + R2
y =
√

21.82 + 21.62 = 31
Its direction is calculated as its angle with respect to the +x
axis:

tan θ =
Ry

Rx
=

21.6
21.8

≈ 1

The angle is θ = 45◦ as both components are positive.

Scalar Product
Many formulas in physics can be expressed as products of vectors. Two types

of product are de�ned for this purpose:
(1) Scalar product,
(2) Vector product.

As can be understood from their names, the �rst results in a scalar number and
the second in a vector. First, let us consider the scalar product.

The scalar product of two vectors ~A and ~B is a scalar number de�ned as
Figure 1.14: Scalar product.

~A · ~B = A B cos θ (Scalar product) (1.6)

where A, B are magnitudes, and θ is the angle between the two vectors.
Let us underline the important properties of a scalar product:

• Commutation: ~A · ~B = ~B · ~A

• Distribution: ~A · (~B + ~C) = ~A · ~B + ~A · ~C

• If two vectors form an angle θ = 90◦ , in other words, if the two vectors are
perpendicular to each other, the scalar product is zero. (cos 90◦ = 0 ). This
feature is often used in calculations as the condition for perpendicularity.

• ~A · ~A = A A cos 0◦ = A2 or the scalar product of a vector by itself gives the
square of its magnitude.

• The sign of the scalar product comes from the cos θ term. The product is
positive if the angle between the two vectors is less than 90◦ and negative if
greater.

Expression of Scalar Product in Terms of Its Components
First, let us �nd the scalar products of the unit vectors (ı̂, ̂ , k̂ ) with each

other:

ı̂ · ı̂ = 1.1. cos 0 = 1

ı̂ · ̂ = 1.1. cos 90◦ = 0

Likewise, the scalar products of the vectors ̂ and k̂ with themselves is 1 and
with other combinations is zero. Therefore,

ı̂ · ı̂ = ̂ · ̂ = k̂ · k̂ = 1

ı̂ · ̂ = ̂ · k̂ = k̂ · ı̂ = 0
(1.7)

Now let us use these results in the scalar product of two vectors given with
components:

~A · ~B = (Ax ı̂ + Ay ̂ + Az k̂ ) · (Bx ı̂ + By ̂ + Bz k̂ )
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As the scalar products in the brackets are expanded, the components, which are
numbers, become coe�cients, and only the scalar products of the unit vectors
remain:

~A · ~B = AxBx (ı̂ · ı̂) + AxBy (ı̂ · ̂) + AxBz (ı̂ · k̂) +

+AyBx ( ̂ · ı̂) + AyBy ( ̂ · ̂) + AyBz ( ̂ · k̂) +

+AzBx ( k̂ · ı̂) + AzBy ( k̂ · ̂) + AzBz ( k̂ · k̂)

As the scalar products of the vectors in this expression will either be 1 or 0, the
result simpli�es as follows:

~A · ~B = AxBx + AyBy + AzBz

In particular, the scalar product of a vector with itself gives the square of its
magnitude:

A2 = ~A · ~A = A2
x + A2

y + A2
z (1.8)

Consequently, also recalling the de�nition (1.6), we can calculate the scalar
product in two di�erent ways:

Scalar Product : ~A · ~B =

{
A B cos θ
AxBx + AyBy + AzBz

(1.9)

A good application of a scalar product is in �nding the angle between two
vectors. Combining the two aforementioned expressions for cos θ ,

cos θ =
AxBx + AyBy + AzBz

A B
=

AxBx + AyBy + AzBz√
A2

x + A2
y + A2

z

√
B2

x + B2
y + B2

z

(1.10)

Scalar product will be used in many de�nitions in this course, such as work,
electric potential, magnetic �ux, etc.

Example 1.10

Find the scalar products of the vectors ~A, ~B and ~C with each
other.

Answer
Calculate the angles between the vectors from the �gure
when using the formula ~A.~B = AB cos θ :

~A · ~B = AB cos(180◦ − 37◦) = 3 × 5 × (− cos 37◦)
~A · ~B = 15 × (−0.8) = −12
~A · ~C = AC cos(90◦ − 30◦) = 3 × 4 × cos 60◦
~A · ~C = 12 × (0.5) = 6
~B · ~C = BC cos(90◦ + 67◦) = 5 × 4 × cos 157◦
~B · ~C = 20 × (− cos 23◦) = 20 × (−0.92) = −18

Example 1.11

~p = 3ı̂ − 8 ̂ , ~q = 8ı̂ + 7 ̂

(a) Find the scalar product ~p · ~q ,
(b) Find the angle between these two vectors.

Answer
(a) Use the component expression of scalar product:

~p · ~q = pxqx + pyqy = 3 × 8 + (−8) × 7 = −32

(b) First, �nd the magnitudes of the vectors:
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p =

√
p2

x + p2
y =

√
32 + (−8)2 =

√
73 ≈ 8.5

q =
√

82 + 72 =
√

113 ≈ 11

This data is used in formula (1.10):

cos θ =
~p · ~q
p q

=
−32

8.5 × 11
= −0.34

θ = 110◦

The result is an obtuse angle, as the scalar product is negative.

Example 1.12

~A = Ax ı̂ + 12 ̂ , ~B = 4ı̂ + 5 ̂

What should the value of the unknown component Ax be such
that these two vectors are perpendicular?

Answer
The scalar product must be zero if the two vectors are per-
pendicular. Write this condition in terms of the components,

~A · ~B = AxBx + AyBy = 0
Ax × 4 + 12 × 5 = 0 → Ax = −60/4 = −15

Vector Product
There are many cases in physics in which operations on two vectors result in

a new vector. Hence, it is convenient to de�ne a vector product.
De�nition: The vector product of the vectors ~A and ~B with an angle θ

between them, is a new vector denoted as

~C = ~A × ~B

and its magnitude and direction are:

• Magnitude: C = A B sin θ ,

• Direction: Perpendicular to the plane formed by ~A and ~B and given by
the right-hand rule.

Right-Hand Rule: The right-hand rule needs to be well understood, as it
will be used in many topics throughout this course. As in Figure (1.15), four
�ngers of the right hand are pointed towards the �rst vector ( ~A ) and the palm is
turned towards the second vector (~B ), thus the thumb gives the direction of the
vector ~C .

Figure 1.15: The direction of
vector product is given with the
right-hand rule.

This rule may be described di�erently in various textbooks. Although the
expression we provide here is quite common, you may continue to use any other
technique that suits you.

Let us underline the important properties of a vector product:

• Anticommutativity: ~B × ~A = −~A × ~B .
Hence, the order matters in a vector product.

• Distribution: ~A × (~B + ~C) = ~A × ~B + ~A × ~C

• If the two vectors are parallel (θ = 0 ) or anti-parallel (θ = 180◦ ), then the
vector product will be zero, as the sines will have zero value.
In particular, the vector product of a vector with itself is zero: ~A × ~A = 0
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Expression of Vector Product in Terms of Components
First, let us �nd the vector products of the unit vectors (ı̂, ̂ , k̂ ) with each

other. By de�nition, the product of each vector with itself will be zero,

ı̂ × ı̂ = ̂ × ̂ = k̂ × k̂ = 0

Now let us look at the product ı̂ × ̂ : As the magnitudes are 1 and the angles are
90◦ , the result of the vector product will be a vector of magnitude 1.1. sin 90◦=1 .
Its direction will be in the +z direction according to the right-hand rule. Hence,
this is just our unit vector k̂ .

Also, as the vector product is anticommutative, ̂ × ı̂ = − k̂ .
The vector products of unit vectors are thus as follows:

ı̂ × ı̂ = ̂ × ̂ = k̂ × k̂ = 0

ı̂ × ̂ = k̂, ̂ × k̂ = ı̂, k̂ × ı̂ = ̂
(1.11)

Now let us use these results in the vector product of two vectors given with
components:

~C = ~A × ~B = (Ax ı̂ + Ay ̂ + Az k̂ ) × (Bx ı̂ + By ̂ + Bz k̂ )

If the brackets are expanded and the component are taken outside of the vector
products,

~C = AxBx (ı̂ × ı̂) + AxBy (ı̂ × ̂) + AxBz (ı̂ × k̂) +

+AyBx ( ̂ × ı̂) + AyBy ( ̂ × ̂) + AyBz ( ̂ × k̂) +

+AzBx ( k̂ × ı̂︸︷︷︸
̂

) + AzBy ( k̂ × ̂︸︷︷︸
−ı̂

) + AzBz ( k̂ × k̂︸︷︷︸
0

)

The result simpli�es as follows when the vector product expressions of unit
vectors are used:

~C = ~A × ~B = (AyBz − AzBy︸         ︷︷         ︸
Cx

) ı̂ + (AzBx − AxBz︸         ︷︷         ︸
Cy

) ̂ + (AxBy − AyBx︸          ︷︷          ︸
Cz

) ı̂ (1.12)

The circular permutation technique is used to memorize this formula. Consider
that the indexes rotate after each other as follows:

x→ y→ z , y→ z→ x , z→ x→ y

Accordingly, when writing the Cx component, follow it with the y -component of
Figure 1.16: Circular permuta-
tion.

~A multiplied by the z -component of ~B and then switch the indexes and subtract.
The circular permutation of the indexes is performed for the other components:

Cx = AyBz︸      ︷︷      ︸
x→y→z

−AzBy , Cy = AzBx︸      ︷︷      ︸
y→z→x

−AxBz , Cz = AxBy︸      ︷︷      ︸
z→x→y

−AyBx

Another way of expressing vector product is to write it as a determinant:

~A × ~B = det

∣∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣∣ (1.13)
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If you expand this determinant according to the minors of the �rst row, the
expression (1.12) of the vector product follows.

Quantities expressed as vector products in physics include torque, angular
momentum, magnetic force, etc.

The limited vector information we provided here is vital to understanding
subsequent topics. It would be wrong to continue without understanding these
matters.

Example 1.13

The �gure shows vectors drawn at the corners of a cube with
unit length (1) edges.
Find only the directions of the vector products ~a×~b, ~c×~d and
~e ×~f and mark them on a �gure.

Answer
According to the right-hand rule, if four �ngers are pointed
towards the �rst vector and the palm is turned towards the
second vector, then the thumb gives the direction of the prod-
uct. Accordingly, the results are as follows:

Example 1.14

The magnitudes of vectors ~a and ~b shown on the xy -plane are
a = 15 and b = 12 units respectively. Find the magnitude and
direction of the vector ~c which is the product ~c = ~a × ~b .

Answer
Let us �rst �nd the magnitude of the vector ~c . It can be
seen from the �gure that the angle between the vectors is
90 − (23 + 30) = 37◦ . Accordingly,

c = a b sin 37 = 15 × 12 × 0.6
c = 108

The direction of ~c should be perpendicular to the xy -plane,
in other words, along the z -axis. The −z direction is found
according to the right-hand rule.

Example 1.15

The vectors ~D = 3ı̂ − 5 ̂ , ~E = 7ı̂ − 3 k̂ are given.

Calculate the components of the vector ~F = ~D × ~E .

Answer
Use the formula (1.12) that gives the components. The circu-
lar permutation of the component indexes allows us to easily

remember the components.

Fx = DyEz − DzEy = −5 × (−3) − 0 × 0 = 15

Fy = DzEx − DxEz = 0 × 7 − 3 × (−3) = 9

Fz = DxEy − DyEx = 3 × 0 − 5 × 7 = −35

Accordingly, ~F = 15ı̂ + 9 ̂ − 35 k̂ .

Multiple-choice Questions

1. How many signi�cant �gures does the number 0.003804
have?

(a) 2 (b) 3 (c) 4 (d) 5

2. How should the result of 1.2 + 0.222 =? be expressed?
(a) 1.2 (b) 1.22 (c) 1.4 (d) 1.422
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3. The mass of a metal coin is (8.2 ± 0.1) grams. What is
the mass of two metal coins?
(a) 16.4 (b) 16.4±0.2 (c) 16.6 (d) 16±0.1

4. The relative error in the measurement of the edge of a
cube is 1 % . What is the relative error of the volume of
the cube?

(a) 1 % (b) 2 % (c) 3 % (d) 4 %

5. An object has a mass of 8.888 g and volume of 2.0 cm3 .
What is the density of this object in g/cm3 ?
(a) 4 (b) 4.4 (c) 4.44 (d) 4.444

6. Which of the following quantities is not a vector?
(a) Velocity
(b) Force
(c) Electric �eld
(d) Volume

7. Which of the following is true if two vectors are perpen-
dicular?

(a) The vectors have the same magnitude.
(b) Their scalar product is zero.
(c) Their vector product is zero.
(d) Their components are the same.

8. Which sum is correct for the three vectors in Diagram
1?
(a) ~a = ~b +~c (b) ~b = ~a +~c (c) ~c = ~a + ~b (d) None.

9. Which di�erence is correct for the three vectors in Dia-
gram 2?
(a) ~a = ~b −~c (b) ~b = ~a −~c (c) ~c = ~a − ~b (d) None.

10. Which equality is true for the three vectors in Diagram
3?

(a) ~c = ~a + ~b
(b) ~a − ~b = ~c
(c) ~a + ~b +~c = 0
(d) ~b = ~a +~c

11. Which of the following is true if the vector product of
two vectors is zero?

(a) The vectors are parallel.
(b) The vectors are perpendicular.
(c) The magnitudes of the vectors are equal.
(d) None of the above.

12. The scalar product of a vector ( ~A · ~A ) with itself is:
(a) Zero.
(b) Equal to its magnitude.
(c) Equal to the square of its magnitude.
(d) Equal to the square root of its magnitude.

13. Which of the following equalities is true?
(a) ~A · ~B = ~B · ~A
(b) ~A × ~B = −~B × ~A
(c) ~A × ~A = 0
(d) All of the above

14. The magnitude of vector ~a is 5 units and the magni-
tude of vector ~b is 3 units. Accordingly, which of the
following cannot be the magnitude of ~a + ~b?

(a) 1 (b) 3 (c) 5 (d) 7

15. Which of the following propositions is true?
(a) The sum of two vectors with di�erent magnitudes
may be zero.
(b) The magnitude of a vector is equal or greater than
its perpendicular components.
(c) The sum of the vectors (ı̂ + ̂) is also a unit vector.
(d) If ~a = ~b +~c then a > b and a > c are always true.

16. Which of the following vector algebra operations does
not comply with the rules?

(a) ~A · (~B × ~C)
(b) ~A × (~B + ~C)
(c) ~A × (~B · ~C)
(d) ~A × (~B × ~C)

17. Which of the following vector equalities is false?
(a) ~A · (~B + ~C) = ~A · ~B + ~A · ~C
(b) ~A × (~B + ~C) = ~A × ~B + ~A × ~C
(c) ~A · (~A × ~B) = 0
(d) ~A · (~B × ~B) = B2~A

18. Which of the following is true if the sum of three vectors
is zero?

(a) All three vectors are on the same plane.
(b) The vectors are perpendicular.
(c) The vectors have the same magnitude.
(d) The sum of three vectors cannot be zero.

19. Which of the following is true if the scalar product of
two vectors is negative?

(a) The vectors have equal magnitude.
(b) The vectors are in opposite directions.
(c) Their angle is obtuse.
(d) The vectors are perpendicular.
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20. If ~a·~b = ~a·~c , then which of the following is always true?

(a) ~b = ~c

(b) ~b and ~c are in the same direction.
(c) ~b and ~c are perpendicular.
(d) The projections of ~b and ~c along ~a are equal.

Problems

1.1 Dimensions and Units

1.1 The fuel consumption of an automobile is given as
60.0 mil/gallon . Convert this into the unit km/liter . (1 mil =

1.609 km and 1 gallon = 3.788 liter .)
[Answer: 25.5 km/L.]

1.2 The unit light-year, a unit of length used in astronomy,
is the distance traveled by light in one year with the speed
c = 2.998 × 108 m/s . Another unit of length, the Astronomic
Unit (AU), is the average distance between the Earth and the
Sun and 1 AU = 1.50 × 108 km . (a) How many meters is one
light-year? (b) How many AUs is one light-year?

[A: (a) 9.45 × 1015 m , (b) 6.3 × 104 AU .]

1.3 A wall of 6.0 m2 can be completely covered with 1.0 liters
of paint. What is the thickness of the paint?

[A: 0.17 mm .]

1.4 Express the following data using pre�xes of basic units:
3 × 10−9 m , 8 × 1013 bytes ,5 × 10−6 seconds .

[A: 3 nm , 80 terabytes , 5 µs .]

1.2 Precision and Significant Figures

1.5 The radius of a sphere is measured as 6.5 ± 0.2 cm . Cal-
culate the surface area and volume of this sphere, and express
the results with a margin of error. (The surface area of a
sphere is A = 4πr2 and its volume is V = (4/3)πr3 .)

[A: A = (531 ± 30) cm2 , V = (1150 ± 100) cm3 .]

1.6 A watch brand claims that its watches produce 8 seconds
of error in one year. (a) What is the relative error of this
watch? (b) How much error is there at the end of a 90-minute
football match? [A: (a) 3 × 10−7 , (b) 0.001 s .]

1.7 The length of a rectangular plate is measured with a
millimetric ruler and found to be 18 mm . Then, its width is
measured more precisely with a micrometer and found to be
3.5 mm . (a) Find the relative errors of the width and length.
(b) Calculate the surface area of the plate with a margin of
error. [A: (a) 0.06, 0.03. (b) (63 ± 6) mm2 .]

1.8 According FIFA rules, the width of a football �eld should
be within the range 65 − 75 m and length within the range
100 − 110 m . (a) What are the relative errors for the width
and the length? (b) If we wish to cover this �eld with grass,
what would the surface area of the �eld with a margin of
error be? [A: 7 % 5 % , (b) 7350 ± 882 m2 .]

1.3 Vectors

Problem 1.9
1.9 For the vectors shown on a millimeter graph paper in
the �gure, �nd the sums ~a + ~b , ~b +~c and ~a +~c by drawing
them according to the triangle rule.

1.10 The magnitudes and angles to the +x axis of three vec-
tors are given as follows: (a) 33 m/s, 60◦ , (b) 128 m/s, 150◦ ,
(c) 22 m/s, −145◦ . Calculate the components of these vectors.
[A: (a) 17, 29 , (b) −111, 64 , (c) −18,−13 .]

Problem 1.11
1.11 Calculate the components of the vectors ~A , ~B and ~C ,
whose magnitudes and directions are given in the �gure.

[A: Ax=52, Ay=30 , Bx= − 24, By=32 , Cx=0,Cy= − 30 .]

1.12 Calculate the magnitudes and directions (angles to the
x axis) of the following three vectors speci�ed with their
components: ax=5, ay=12 , bx=− 4, by=− 3 , cx=− 3, cy=1 .

[A: a = 13, 67◦ , b = 5, −143◦ , c =
√

10, 162◦ .]

Problem 1.13
1.13 (a) Write the vectors ~A and ~B shown in the �gure
in terms of the unit vectors ( ı̂, ̂ ). (b) Find the vector
~C = 2~A − 3~B . (c) Calculate the magnitude and direction
of the vector ~C .

[A: (a) ~A = 24ı̂+32 ̂ , ~B = −17ı̂−10 ̂ . (b) ~C = 99ı̂+94 ̂ .
(c) C = 137, θ = 44◦ .]
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1.14 The vectors ~F = −2ı̂+ 3 ̂ + 6 k̂ and ~G = 4ı̂− 7 ̂ − 4 k̂
are given. (a) Calculate the magnitudes of the vectors.
(b) Calculate the vector ~F − ~G .

[A: (a) 7 and 9, (b) ~F − ~G = −6ı̂ + 10 ̂ + 10 k̂ .]

1.15 (a) Calculate the magnitudes of the vectors ~A = 2ı̂ −
2 ̂ + k̂ and ~B = 6ı̂ + 2 ̂ − 3 k̂ . (b) Calculate their scalar
product. (c) Find the angle between the two vectors.

[A: (a) 3 and 7, (b) 5, (c) 76◦ .]

1.16 The vectors ~a = 2ı̂−5 k̂ , ~b = 3 ̂ −4 k̂ and ~c = 5ı̂+ 2 ̂
are given. Calculate the scalar product ~a · (~b −~c) . [A: 10.]

1.17 Find a vector ~b perpendicular to the vector ~a = 3ı̂− 5 ̂
such that the component bx is 4 units. [A: ~b = 4ı̂ + 2.4 ̂ .]

1.18 The magnitudes of the vectors ~A and ~B are known to
be A = 1.2 and B = 5 . The vector products of these two
vectors is ~A× ~B = 3ı̂− 4 ̂ . Find the angle between these two
vectors. [A: 53◦ .]

Problem 1.19
1.19 For the vectors indicated in the �gure, show only the
directions of the products ~a × ~b , ~c × ~d , ~e ×~f and ~g × ~h on
the �gure.

1.20 (a) Calculate the magnitudes of the vectors ~A = 2ı̂+2 ̂−
k̂ and ~B = 4ı̂ + 4 ̂ + 7 k̂ . (b) Find the angle between them.
(c) Find the components of the vector product ~C = ~A × ~B .
(d) Calculate the magnitude of ~C .

[A: (a) 3 and 9, (b) 71◦ , (c) Cx = 18 , Cy = −18 , Cz = 0 ,
(d) C = 18

√
2 .]
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MOTION IN A STRAIGHT

LINE

The masterpiece of Japanese
public transportation system,
Shinkansen (the bullet train)
passing by Mount Fuji Yama en
route from Tokyo to Osaka.
The average speed of
Shinkansen can reach up
to 320 km/h. How can we
estimate the position of this
train at a future time?

Motion is one of the main topics of interest in physics. The branch of physics
called Mechanics studies all moving objects, from tiny pebbles to automobiles,
from cannon shells to planets and massive stars.

Mechanics comprises two parts: Kinematics is the branch of Mechanics
that studies the relations between the positions and speeds of objects with time,
regardless of the reasons for the motion. Dynamics sets the laws of motion and
examines the motion under physical forces. In this chapter, we will examine
one-dimensional kinematics. Vector concepts shall not be required here, but the
basic concepts that we will develop will later form the basis of vector expressions
in two and three-dimensional motions.
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2.1 POSITION, DISPLACEMENT, VELOCITY AND ACCELERATION

Position and time are the two most fundamental concepts in physics. Time is
a uniform quantity that �ows at the same rate for everyone. Because of these prop-
erties, time is the independent variable in kinematics, as it is not possible
to alter it. It is indicated in equations with the symbol t .
Position and Displacement

The position of an object is its location on a coordinate system. In three-
dimensional space, position is speci�ed with the Cartesian coordinates ( x, y, z ).
These coordinates vary as a function of time during a general motion:

x = x(t), y = y(t), z = z(t)

Only one coordinate axis is required in one-dimensional space. For this purpose,
an in�nite line is taken and the positive direction is marked by an arrow at the
end. Then, an origin (O), in other words, a yardstick, is chosen to mark the place
from which the measurements are to be made. This can be a tree or a pole that is
known to everyone. The origin separates the positive region from the negative
one on the x -axis.

Figure 2.1: The position of an
object in a one-dimensional coor-
dinate system.

Therefore, the position of an object at point P is its x coordinate at time t :

x = x(t) (Position) (2.1)

The property that determines motion is the change in position. Displacement
is de�ned for this purpose.

Figure 2.2: Displacement ∆x .

De�nition: If the position of an object is x1 at time t1 and its position is x2
at a later time t2 , the di�erence

∆x = x2 − x1 (Displacement) (2.2)

is called the displacement (Figure 2.2). Its unit is the meter (m). (In physics,
the ∆ sign before a symbol means the change in that quantity. For example:
∆a = alast − afirst .)

The sign of displacement determines the direction of motion. If ∆x>0 then
x2> x1 , in other words, the object moves in the positive direction. Likewise, if
∆x<0 then x2< x1 , and the object moves in the negative direction.
Average and Instantaneous Velocity

Anyone can run 100 meters, but some of us run it in a shorter time. It is
important to know the amount of displacement in a given time interval. Velocity
is de�ned for this purpose.
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De�nition: If the position of an object at time t1 is x1 and its position at a
later time t2 is x2 , then the ratio

vav =
displacement
elapsed time =

x2 − x1

t2 − t1
=

∆x
∆t

(average velocity) (2.3)

is called the average velocity. Its unit is the meter/second (m/s).
The direction of motion is always determined by the sign of velocity. As ∆t

is always positive, only the sign of the displacement ∆x matters. Accordingly,
if displacement ∆x> 0 , then the velocity is also positive and the object moves
in the +x direction. In contrast, if ∆x<0 , then the velocity is negative and the
object moves in the −x direction.

Average velocity is not useful for calculating in physics, because it requires
measurement at two points and it is not possible to know the velocity until the
object reaches the �nal point x2 . Instead, we would like to know the velocity at a
given instant. The concept of instantaneous velocity is de�ned for this purpose.

Let us remember the concept of the derivative in mathematics. Consider
placing two sticks at the positions x1 and x2 along a path so as to measure
average speed. Let us measure the times t1 and t2 when the moving object passes
through these sticks. This measurement will give us the average speed in the
interval [x1, x2] . Now, let us bring the stick at x2 closer to x1 , in other words,
let ∆x get smaller. In this case, the value ∆t will also be smaller. However, the
ratio ∆x/∆t may not be small.

Therefore, let us gradually bring x2 closer to x1 such that ∆x → 0 . In
such a case, the time interval will also approach zero. Yes, ∆x → 0, ∆t → 0
but surprisingly, the ratio ∆x/∆t remains at a �nite value. The operation of
“approaching zero without setting equal to zero” is known in mathematics as the
limit. And the ratio ∆x/∆t is called “the derivative of x with respect to t ". The
�rst derivative is shown as dx/dt or x′ .

De�nition: The limit of the average velocity is called the instantaneous
velocity (or simply the velocity):

v = lim
t2→t1

x2 − x1

t2 − t1
= lim

∆t→0

∆x
∆t

=
dx
dt

(velocity) (2.4)

We thus know the velocity at a given time t . The direction of motion again
depends on the sign of the velocity v .
Speed

Speed is the absolute value (or, the magnitude) of the velocity, shown as | v | .
In one-dimensional motion, the velocity seems merely to be an algebraic

quantity, it can be either positive or negative. But, in reality, it is a vector quantity,
as will be clear in two- and three-dimensional motion. The speed of a vector
velocity has the same de�nition as the magnitude.
Brief information on derivatives

The concept of derivative and derivation techniques are examined extensively
in calculus courses. Here, let us brie�y review the derivatives of the most fre-
quently encountered types of functions without proof. The derivatives of most
useful functions y(x) with respect to the independent variable x are as follows:
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Derivatives of certain functions

function y derivative y′ =
dy
dx

function y derivative y′ =
dy
dx

x 1 sin x cos x
x3 3x2 cos x − sin x
x−5 −5x−6 tan x 1/ cos2 x
√

x 1/
(
2
√

x
)

ex ex

xn n xn−1 ln x 1/x

In mechanics, the independent variable should be taken as t when using these
formulas.

Example 2.1

The positions of a moving object at various times t are shown
on the x axis: (a) Determine the displacements ∆x = x2 − x1
and ∆x = x3 − x2 . (b) Determine the average velocities at the
time intervals ∆t = t2 − t1 and ∆t = t3 − t2 .

Answer
(a) We read the positions of the object at various times from

the �gure:
During the interval [t1, t2] : ∆x = x2 − x1 = 6 − 2 = 4 m

The object was displaced by 4 m in the positive direction.
During the interval [t2, t3] : ∆x = x3 − x2 = −4 − 6 =

−10 m
The object was displaced by 10 m in the negative direction.

(b) The average velocity is the ratio of these displacements to
the elapsed time:

During the interval [t1, t2] : vav =
∆x
∆t

=
4

2 − 1
= 4 m/s

During the interval [t2, t3] : vav =
∆x
∆t

=
−10
5 − 2

= −3.3 m/s

Example 2.2

The position of an object is given as a function of time as:
x = t3 − 5t2 + 8 (meters)

(a) Find the positions of the object at times t = 1 s and t = 5 s ,
(b) Calculate the average velocity of the object during this

time interval,
(c) Find the velocities of the object at times t = 1 s and t = 5 s ,
(d) Find the positions at which the velocity of the object is

zero.

Answer
(a) The x values of the given function at times t = 1 s and
t = 5 s give the positions:

For t = 1 s : x(1) = 13 − 5 × 12 + 8 = 4 m
For t = 5 s : x(5) = 53 − 5 × 52 + 8 = 8 m

(b) vav =
∆x
∆t

=
8 − 4
5 − 1

= 1 m/s

(c) The general expression of velocity is the derivative dx/dt :

v =
dx
dt

= 3t2 − 10t

The values of this expression at the requested times t are the
instantaneous velocities:
The velocity at t = 1 : v(1) = 3 × 12 − 10 × 1 = −7 m/s
The velocity at t = 5 : v(5) = 3 × 52 − 10 × 5 = 25 m/s

(d) When the velocity is zero, we have v(t) = 0 :
v = 3t2 − 10t = 0

The velocity is zero at the roots of this expression, which
are t = 0 and t = 10/3 . We calculate the x positions that
correspond to these t values:

x(0) = 8 m and x (10/3) = −11 m

Average and Instantaneous Acceleration
Velocity gives us very important information about the motion of an object.

However, we sometimes also need to know the rate of change of velocity with
respect to time. We might ask, in regard to two cars, “Which one speeds up more
quickly?” The rate of change of velocity is called the acceleration.
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De�nition: If the velocity of an object is v1 at time t1 , and v2 at a later time
t2 , then the ratio

Figure 2.3: Average accelera-
tion.

aav =
v2 − v1

t2 − t1
=

∆v

∆t
(average velocity) (2.5)

is called the average acceleration. Its unit is the meter/second 2 (m/s2 ).
It is important to understand the sign of the acceleration. We sometimes hear

de�nitive statements such as “acceleration is positive if the object speeds up and
negative if it slows down.” This is incorrect. The expression for acceleration above
shows that the sign depends on the chosen coordinate system. For example, if the
object moves in the positive direction (v1, v2 > 0 ) and its velocity is increasing
(v2 > v1 ), then surely ∆v > 0 and therefore aav will be positive. However,
consider now the case in which the object is moving in the negative direction
(v1, v2 both negative). If its speed is increasing, for negative numbers, this means
that v2 < v1 (e.g., −5 < −3 ). In this case, ∆v = v2 − v1 < 0 and therefore aav is
negative!

The correct interpretation of the sign of acceleration is as follows: Objects that
speed up in the positive direction or slow down in the negative direction have positive
acceleration. And, vice versa, objects that slow down in the positive direction or
speed up in the negative direction have negative acceleration.

Average acceleration is, again, not a very useful quantity, because it requires
measurement at two points and it is not possible to know until the object reaches
the �nal velocity v2 . Instead, we would like to know the acceleration at a given
instant.

De�nition: The limit of the average acceleration is called the instantaneous
acceleration (or simply the acceleration):

a = lim
∆t→0

∆v

∆t
=

dv
dt

=
d2x
dt2 (acceleration) (2.6)

In other words, acceleration is the derivative of velocity with respect to time.
Also, as velocity is the derivative of position, we may regard acceleration as the
second derivative of position. In mathematics, the second derivative is shown
with d2x/dt2 or x′′ .

We can thus know the acceleration at a given time t . Acceleration is not often
used in daily life. However, we sometimes hear the performance of sports cars
expressed as “reaching 100 km/h speed in 6 seconds”, etc. This is, in fact, another
expression of acceleration.

Example 2.3

The velocities of a moving object at various times are shown on
the x axis.

(a) Determine the velocity di�erences ∆v = v2 − v1 and
∆v = v3 − v2 ,

(b) Determine the average accelerations at the time intervals
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∆t = t2 − t1 and ∆t = t3 − t2 .

Answer
(a) Reading the velocities of the object at various times from
the �gure:

During the interval [t1, t2] : ∆v = v2−v1 = 6−3 = 3 m/s
During the interval [t2, t3] : ∆v = v3−v2 = −2−6 = −8 m

(b) The average acceleration is the ratio of these di�erences
in velocity to the elapsed time:

During the interval [t1, t2] : aav =
∆v

∆t
=

3
2 − 1

= 3 m/s2

During the interval [t2, t3] : aav =
−8

5 − 2
= −2.7 m/s2

Example 2.4

The position of an object as a function of time is given by
x = t3 − 5t2 + 4 (meters) .

(a) Determine the velocity and acceleration functions using
derivative,

(b) Find the velocities of the object at times t = 1 s and t = 5 s ,
(c) Calculate the average acceleration of the object during this

time interval,
(d) Find the accelerations of the object at times t = 1 s and

t = 5 s ,
(e) Find the time when the acceleration is zero.

Answer
(a) The �rst derivative of x is the velocity v and its second
derivative is the acceleration a :

v = x′ = 3t2 − 10t
a = v′ = 6t − 10

(b) For t = 1 , v = 3 × 12 − 10 × 1 = −7 m/s ,

for t = 5 , v = 3 × 52 − 10 × 5 = 25 m/s .
(c) These velocities are used in the de�nition of average ac-
celeration:

aav =
∆v

∆t
=

25 − (−7)
5 − 1

= 8 m/s2

(d) We use the values t = 1 and 5 in the acceleration expres-
sion:

a(1) = 6 × 1 − 10 = −4 m/s2

a(5) = 6 × 5 − 10 = 20 m/s2

(e) We calculate the time when the acceleration expression is
zero:

0 = 6t − 10 → t = 1.7 s .

2.2 MOTION WITH CONSTANT ACCELERATION

There is accelerated motion whenever the velocity of an object traveling on a
straight line changes. Examining the most general accelerated motion is di�cult
and requires advanced mathematics. However, if the rate of change of velocity is
constant, in other words, if the change in velocity is always the same at equal time
intervals, then it is a motion with constant acceleration. This is the simplest
accelerated motion.

Let us remember the formulas for average acceleration and average velocity:

aav =
v2 − v1

t2 − t1
, vav =

x2 − x1

t2 − t1

Let us simplify the notation here: Let the object start moving at t1 = 0 from an
initial position x0 with an initial velocity of v0 and let its �nal velocity be v at
the �nal time t2 = t at the �nal position x2 = x . Since the average of a constant
quantity is itself, making these changes in the formulas and rearranging, we get

aav = a =
v − v0
t − 0

, vav =
x − x0
t − 0

v = v0 + a t , x = x0 + vav t

We can eliminate the average velocity vav in the last expression as follows: The
average of the velocity that changes uniformly from the value v0 to the value v
will be,

vav =
v + v0

2
Also, after using this expression, the position formula can �nally be written:

x = x0 + v0 t + 1
2 a t2
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Notice that the position x changes with the square of time ( t2 ) in motion with
constant acceleration.

If the time t in the velocity expression is extracted as t=(v−v0)/a and used in
the position expression, we �nd a very useful velocity formula without time:

v2 − v2
0 = 2 a (x − x0)

These formulas allow us to calculate the position and velocity at time t of the an
object with given initial conditions, in other words, initial position x0 and initial
velocity v0 , moving with acceleration a .

Let us summarize all the formulas for motion with constant acceleration:

v = v0 + a t
x = x0 + v0 t + 1

2 a t2

v2 − v2
0 = 2 a (x − x0)

(motion with constant acceleration) (2.7)

Motion with Constant Velocity
A special case of accelerated motion is the motion at constant velocity along

a line. There is no need to derive separate formulas for this. Acceleration is zero
if the velocity is constant. We �nd the formulas for uniform linear motion if we
take a = 0 in the aforementioned formulas:

x = x0 + v0 t (uniform linear motion) (2.8)

If we wish to know the distance traveled by the object rather than its �nal position,
we can write this formula in terms of the distance traveled s using s = x − x0 , as
follows:

s = x − x0 = v t (distance traveled) (2.9)

Example 2.5

A car starts from rest and accelerates at a constant rate of
2 m/s2 .
(a) What will its velocity and distance traveled be after 3 s?
(b) In how many seconds will it reach the velocity 10 m/s?
(c) In how many seconds will it cover a distance of 64 m?

Answer
If we choose the origin at the initial position of the object,
then x0 = 0 . Since it starts from rest, v0 = 0 . As the acceler-
ation is given as a = 2 m/s2 , using Eqs. (2.7),

v = v0 + at = 0 + 2t = 2t
x = x0 + v0t + 1

2 t2 = 0 + 0 + 1
2 2t2 = t2

We can solve each item using these equations:
(a) The velocity and position at time t=3 s are found by plug-
ging t = 3 in the expressions that we found for v and x :

v = 2 × 3 = 6 m/s and x = (3)2 = 9 m .
(b) t is found by taking v = 10 m/s in our velocity expression:

10 = 2t −→ t = 5 s .
(c) The t value giving x = 64 m in the position expression is
calculated:

64 = t2 −→ t = 8 s .

Example 2.6
velocities given in terms of km/h into m/s units:

v0 = 72 km/h = 72000/3600 m/s = 20 m/s
v = 36 km/h = 10 m/s

(a) We use the time t = 5 s that passes between these two
velocities to �nd the acceleration:

v = v0 + at → 10 = 20 + a × 5 → a = −2 m/s2

As the car traveling in positive direction slows down, its
acceleration is negative.

A car traveling at 72 km/h is slowed down through the pressing
of its brakes and its velocity is reduced to 36 km/ in 5 s .
(a) What is the constant acceleration of the car?
(b) How much distance does it travel during that time?
(c) How much time passes from the start until the car fully

stops?

Answer First, it is necessary to convert the initial and �nal

h
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(b) If we take the initial position of the car as the origin, then
x0 = 0 . Accordingly,

x = x0 + v0t + 1
2 at2 = 0 + 20 × 5 + 1

2 (−2) × 52 = 75 m .

(c) The car coming to a full stop means that its �nal velocity
is v = 0 . Using this value,

v = v0 + at → 0 = 20 − 2t → t = 10 s

Example 2.7

A runner cruising at a velocity of 4 m/s suddenly starts to
accelerate and reaches a velocity of 7 m/s over a distance of
11 m .
(a) What is the constant acceleration of the runner?
(b) How much time elapsed during this acceleration?

Answer
(a) If we choose the origin as the point at which the runner

started to accelerate, then x0 = 0 and v0 = 4 m/s . It will
be suitable to use the velocity formula without time, as the
�rst and �nal velocities are given. Substituting the position
x = 11 m and the velocities, we get,
v2−v2

0 = 2a(x− x0) → 72−42 = 2a×11 → a = 1.5 m/s2

(b) Both the v and the x formula can be used to �nd the time
t . The velocity formula gives a quicker result:

v = v0 + at → 7 = 4 + 1.5t → t = 2 s

Example 2.8

An automobile is traveling at a constant speed of 90 km/h when
it passes a police motorcycle parked under a tree. Spotting a
tra�c violation, the policeman starts the chase on his motor-
cycle when the automobile is 100 m away and accelerates at a
rate of 3 m/s2 .
(a) Choose a coordinate system and starting time to write

the equations giving the positions and velocities of the
automobile and motorcycle.

(b) How long will it take the policeman to catch the automo-
bile?

(c) How far will the motorcycle be from its original position?
(d) What is the velocity of the motorcycle when it catches up

to the automobile?

Answer
In problems with two moving objects, a good approach is
to choose a single coordinate system and write both of their
equations in that same system. This systematic approach will
be much more e�cient in the long run.
First, let us convert the velocity of the automobile into m/s :

90 km/h = 90 000/3 600 = 25 m/s .
(a) Let us take the position where the motorcycle sets o�
as the origin and also start the clock when the motorcycle
begins moving. Accordingly, the initial velocity and position
of the motorcycle are zero: xM0 = vM0 = 0 . If we indicate its

�nal velocity with vM and position with xM , the accelerated
motion formulas are as follows:

vM = vM0 + at = 0 + 3t → vM = 3t
xM = xM0 + vM0t + 1

2 at2 = 0 + 0 + 1.5t2 → xM = 1.5t2

The automobile performs uniform linear motion at a constant
velocity of 25 m/s , in other words, its acceleration is zero.
The initial position of the automobile is 100 m at t = 0 . If
we indicate its �nal position with xA ,

vA = vA0 = 25 m/s = constant
xA = xA0 + v0At → xA = 100 + 25t

In this systematic approach, the solution follows easily once
the equations of motion are written down:
(b) When the motorcycle catches the automobile, they will
both have the same position. The mathematical expression
of this is as follows:

xM = xA

Let us substitute the expressions we found for xM and xA :
1.5t2 = 100 + 25t

From this, we �nd a quadratic equation:
3t2 − 50t − 200 = 0

The roots of these equation are t = −3.3 and t = 20 . As the
negative root is not physically valid, the result is t = 20 s .
(c) Substituting t = 20 s in the expression for xM , the distance
traveled by the motorcycle is found as follows:

xM = 1.5t2 = 1.5 × 202 = 600 m
(d) The value t = 20 s is used in the expression vM = 3t :

vM = 3 × 20 = 60 m/s

Example 2.9

Two cars 100 m apart, start moving toward each other at the
same instant. The �rst car starts with a speed of 4 m/s and
increases its speed at a rate of 1 m/s2 . The second car starts in
the opposite direction with a speed of 6 m/s and increases its
speed at a rate of 3 m/s2 .

(a) Choose a coordinate system for writing the equations of
motion for each car.

(b) When do the cars meet?
(c) What is the distance of the meeting point to the origin?
(d) What is the velocity of each car when they meet?

Answer

This problem could be solved by choosing a separate coordi-
nate system for each moving object. In that case, two origins
and two positive directions would be necessary. Yet, in the
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method we used in the previous problem, it is more consis-
tent to choose only a single coordinate system and write both
motions in that same system.
(a) Let us choose the origin at the position where the �rst car
sets o� and choose the positive direction towards the other
car. Accordingly, we can immediately write the equations of
motion for the �rst car from the given data:

v1 = v10 + a1t = 4 + 1 × t
x1 = x10 + v10t + 1

2 a1t2 = 0 + 4t + 1
2 t2

The second car starts o� at a distance of 100 m away and its
velocity is in the negative direction. Its acceleration is also
negative as it gets faster in the negative direction. Therefore,
the equations of motion of the second car are as follows:

v2 = v20 + a2t = −6 − 3t
x2 = x20 + v20t + 1

2 a2t2 = 100 − 6t + 1
2 (−3)t2

It is easier to solve the problem after writing these equations.
(b) The cars are at the same position when they meet:

x1 = x2

This equality does not mean that they traveled the same dis-
tance. It is the condition of both of them being at the same
coordinate. Therefore, if we substitute the expressions we
found for x1 and x2 ,

4t + 1
2 t2 = 100 − 6t − 3

2 t2

From here, we �nd a quadratic equation for t :
t2 + 5t − 50 = 0

The roots of this equation are −10 and 5 . As negative time
is meaningless, the solution is t = 5 s .
(c) The position of the meeting place is found by taking t = 5
in either of the expressions for x1 or x2 . Using x1 ,

x1 = 4 × 5 + 1
2 (5)2 = 32.5 m = x2 .

(d) We substitute the value t = 5 in the expressions for v1
and v2 that we found above:

v1 = 4 + 5 = 9 m/s
v2 = −6 − 3 × 5 = −21 m/s

2.3 FREE FALL

A most familiar example of motion with constant acceleration is falling objects.
The fall of a stone dropped from a height, a ball thrown upwards decelerating and
falling back down, etc. Galileo was the �rst person to discover that all of these
motions occurred under the same constant gravitational acceleration. Until
the 16th century, everyone believed that “heavier objects fall faster,” as stated
in Aristotle’s book. Galileo showed that this was not true by dropping various
objects from di�erent heights and showing that all objects fall with the same
constant acceleration if air friction is neglected.

Today, Galileo’s experiment can be easily repeated in a vacuum tube in a
laboratory (Figure 2.4). A feather and a coin are observed to fall with the same

Figure 2.4: All objects fall with
the same acceleration in vac-
uum.

acceleration in a vacuum tube. The motion that occurs under the e�ect of only
gravity is called free fall.

The Earth has a constant acceleration near its surface that accelerates all
objects towards its center. This is called gravitational acceleration, and its
absolute value is indicated by g . Although it varies slightly according to geo-
graphical location, it is approximately

g = 9.81 m/s2.

The approximate value of g ≈ 10 m/s2 shall be used in solving problems in this
book. The 2 % error arising from this approximation is negligible.

When using this gravitational acceleration g in the formulas of motion with
constant acceleration (2.7), what should be used for a? a = +g or a = −g? The
answer to this question is: It depends on how the y -axis is chosen. If the y -axis is
chosen upwards, a = −g regardless of which direction the object is thrown. This is
because the gravitational acceleration is towards the center of the earth, in other
words, in opposite direction to our y -axis. But, if the y axis is chosen downwards,
a = +g regardless of the direction of throwing, because the y -axis is in the same
direction as the acceleration.

This may not be important in simple problems. However, if the object moves
in both directions or if the motion of two separate objects is examined simultane-
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ously, then working with a single y axis and not changing it provides the correct
solutions.

Figure 2.5: The distances trav-
eled by a falling object in equal
time intervals.

Therefore, the choice of the y -axis must also be speci�ed when applying the
constant acceleration formulas (2.7). We summarize them for free fall motion:

y-axis is upwards y-axis is downwards
a = −g a = +g

v = v0 − g t v = v0 + g t
y = y0 + v0 t − 1

2 g t2 y = y0 + v0 t − 1
2 g t2

v2 − v2
0 = −2g(y − y0) v2 − v2

0 = 2g(y − y0)

(free fall) (2.10)

These formulas apply both when the object is moving upwards or downwards,
as long as we do not change the coordinate system. For example, we can use the
same equation to examine the motion of a stone thrown upwards until it falls to
the ground. We will discuss this in worked examples below.
Maximum height

Equations (2.10) are su�cient to solve all free fall problems; it is not necessary
to memorize formulas for special cases. As an example, let us calculate the
maximum height reached by an object thrown vertically upwards with an initial
speed v0 . When the object reaches the peak point, it stops for an instant and then
starts moving downwards. In other words, the characteristic of the maximum
height is that the velocity there is zero:

v = 0 (at maximum height)

In the last one of Eqs. (2.10, upwards) we take v = 0 and then solve for y − y0 =

hmax :

hmax =
v2
0

2g

Example 2.10

A ball is thrown from the ground upwards with a speed of
15 m/s .
(a) Choose a coordinate system to write the equations giving

the velocity and position of the ball.
(b) What will be its position and velocity 1 s after being

thrown?
(c) In how many seconds does it reach maximum height?
(d) What is the maximum height?
(e) Atwhat times does it pass through 10 m above the ground?
(f) After how many seconds from being thrown will it fall

back to the ground?

Answer (a) If we choose the +y direction upwards, the ac-
celeration will be −g . Choosing the place where the ball
is thrown as the origin (y0 = 0) , the equations of motion
for a ball thrown in the positive direction with a velocity of
v0 = 15 m/s are as follows:

v = v0 − gt = 15 − 10t
y = y0 + v0t − 1

2gt2 = 15t − 5t2

(b) The velocity and position at the value t = 1 s can be
directly calculated:

v = 15 − 10 × 1 = 5 m/s
y = 15 × 1 − 5 × 12 = 10 m

(c) The characteristic of maximum height is that the velocity
is zero there: v = 0 . We use this condition to �nd the time:

0 = 15 − 10t → t = 1.5 s
(d) We �nd the maximum height by using the time t = 1.5 s
in the y equations:

y = 15 × 1.5 − 5 × 1.52 = 11.3 m
(e) The y equation should satisfy the value y=10 m :

10 = 15t − 5t2 → t2 − 3t + 2 = 0
The two solutions to this equation are t=1 s (going upward)
and t = 2 s (coming downward).
(f) As the time taken to reach the maximum height will be
equal to the time it takes to fall back to the ground, we take
twice the time found in (c). However, if we had not known
this property, we could have directly found the answer by
using the y equation above. The equation y = 15t − 5t2 is
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valid regardless of whether the ball is moving upwards or
downwards. In particular, y = 0 should be true when the
ball is at the ground level. Using this condition,

0 = 15t − 5t2 = t(15 − 5t) → t = 0 and t = 3 s .

Both solutions are valid. The t = 0 solution is the starting
time and the t = 3 s solution is the falling time. In other
words, the ball is at y = 0 height at both times.

Example 2.11

A stone is thrown upwards with a velocity of 30 m/s from the
roof of a building at a height of 35 m from the ground.
(a) Choose a coordinate system to write the velocity and posi-

tion equations of the stone.
(b) Calculate the maximum height and the time to reach it.
(c) How many seconds will it take to fall to the ground?
(d) With what velocity will it hit the ground?

Answer (a) Taking the ground level as the origin and up-
wards as the positive direction, we get y0 = 35 m and a = −g .
Accordingly, the equations of motion are as follows:

v = v0 + at = 30 − 10t
y = y0 + v0t + 1

2 at2 = 35 + 30t − 5t2

We can answer all of the questions using these two equations.
(b) At maximum height v = 0 :

0 = 30 − 10t → t = 3 s
Plugging this value of t into the y equation,

y = 35 + 30 × 3 − 5 × 32 = 80 m

This is the maximum height from the origin, in other words,
from the ground. If we wish to �nd the height from where it
was thrown, it is y − y0 = 80 − 35 = 45 m .
(c) The stone falling to the ground means it reaches the posi-
tion y = 0 :

0 = 35 + 30t − 5t2 = 0 → t = −1 and 7 s
The negative solution is not considered and the answer is
t = 7 s . Notice here that we used the same equation through-
out. Since we remain in the same coordinate system, we
are able to solve all of the problems with a single equation
without separating the motion into two parts of upwards and
downwards.
(d) The velocity of the stone when it falls to the ground is
found by taking t = 7 in the v equation:

v = 30 − 10t = 30 − 10 × 7 = −40 m/s .
The negative sign here indicates that the velocity is in the
opposite direction to the direction that we chose as positive,
in other words, it is downwards.

Example 2.12

The di�erent times technique. Water is dripping in
1 second intervals from the roof of a building at a height of
45 m from the ground. What is the height of the second drop
when the �rst drop hits the ground?

Answer It would be too complicated to try to solve this prob-
lem using our familiar methods. However, the solution will
be simpler if we write each drop in terms of a separate time t
with its own chronometer.
Let us take the origin as being at the roof and the y direction
downwards. Let us start the chronometer when the �rst drop
sets o� and show the measured time with t1 . Accordingly,
the equation of motion will be:

y1 = 1
2gt2

1
When the second drop sets o� 1 second later, we start time
t2 in a separate chronometer. Its motion will be y2 = 1

2gt2
2 .

As the drops set o� in one-second intervals, the second

chronometer will show 1 second less than the �rst one during
each stage. In other words, the relation between the two
times will be as follows:

t2 = t1 − 1
Therefore, the expression of the y2 coordinate will be

y2 = 1
2g(t1 − 1)2 .

Now, when the �rst drop reaches the ground, it will have
traveled a distance of y1 = 45 m . We use this value to �nd
the time t1 :

45 = 5t2
1 → t1 = 3 s

The distance traveled by the second drop at the end of this
time t1 :

y2 = 1
2g(t1 − 1)2 = 5 × 22 = 20 m

The di�erence between the two distances shows how far
behind the second drop is:

y1 − y2 = 45 − 20 = 25 m .
The second drop is 25 m above the ground.

Example 2.13

When a ball is thrown upwards with a velocity of 12 m/s from

the ground, a second ball is thrown downwards with a velocity
of 4 m/s from the roof of a building at a height of 32 m .

(a) Using the same coordinate system, write the equations of
motion for both balls.

(b) When will the two balls meet?
(c) At what height will they meet?
(d) What are their velocities when they meet?

Answer
In this problem, we will again examine the motion of two
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objects in the same coordinate system.
(a) If we choose the origin to be at the ground and the pos-
itive direction upwards, the initial position of the �rst ball
thrown from the ground is y10 = 0 and its initial velocity
is v10 = 12 m/s . For the second ball thrown downwards
from the top of the building, these values are y20 = 32 m
and v20 = −4 m/s . Accordingly, let us write the equations of
motion for both balls side by side:

1st ball 2nd ball
v1 = 12 − 10t v2 = −4 − 10t
y1 = 0 + 12t − 5t2 y2 = 32 − 4t − 5t2

(b) Their y positions will be the same when the balls meet:

y1 = y2
12t − 5t2 = 32 − 4t − 5t2 → 16t = 32

The solution to this equation tells us that the balls meet at
time t = 2 s .
(c) Using this value of t in either y1 or y2 , we �nd the height:

y1 = 12 × 2 − 5 × 22 = 4 m = y2

(d) We �nd the velocities by again using this time t in the
velocity equations:

v1 = 12 − 10 × 2 = −8 m/s
v2 = −4 − 10 × 2 = −24 m/s
Notice that the velocity v1 is negative at the time of the

collision. In other words, the 1st ball went up to its maximum
height and returned, and the meeting took place on its way
down.

Multiple-choice Questions

1. In a coordinate system, which of the following is incor-
rect for an object with an acceleration of a = +2 m/s2 :

(a) It is getting faster if it is traveling in the positive
direction.
(b) It is getting slower if it is traveling in the negative
direction.
(c) Its velocity is always di�erent from zero.
(d) Its velocity changes by equal amounts in equal time
intervals.

2. Which of the following is correct if an object traveling
in the positive direction has negative acceleration?

(a) The velocity of the object increases.
(b) The object stops at some point and turns back.
(c) The velocity of the object remains constant.
(d) None of the above.

3. Which is true for accelerated motion?
(a) Acceleration is zero if the velocity is zero.
(b) Acceleration is always positive if the velocity is
always positive.
(c) An object with constant acceleration may stop.
(d) An object with constant acceleration cannot stop.

4. How many seconds does it take for an object dropped
from a height of 20 m to fall to the ground?

(a) 1 (b) 2 (c) 3 (d) 4

5. What distance does an object dropped from a height
travels in 5 s?

(a) 50 (b) 75 (c) 100 (d) 125

6. The velocity of an object dropped from a height is 40 m/s
after 4 s . What is its average velocity in this time inter-
val?
(a) 0 (b) 10 m/s (c) 20 m/s (d) 40 m/s

7. A stone is thrown upwards from the ground. Which of
the following is correct if the +y axis is chosen upwards?

(a) Its acceleration is +g when traveling upwards.
(b) Its acceleration is zero at maximum height.
(c) Its acceleration is +g when moving downwards.
(d) Its acceleration is −g throughout the motion.

8. A stone dropped from a height falls to the ground in 5
seconds. What is its average acceleration in m/s2 ?

(a) 0 (b) 2 (c) 5 (d) 10

9. A stone is thrown upwards. Which of the following is
correct at maximum height?

(a) Velocity and acceleration are zero.
(b) Velocity is zero, acceleration is maximum.
(c) Velocity is maximum, acceleration is zero.
(d) Velocity is zero, acceleration is the gravitational
acceleration.

10. A car traveling at speed v can stop at a distance d when
the brakes are applied. At what distance will it stop
when it travels at a velocity of 2v?

(a) d/2 (b) d (c) 2d (d) 4d

11. The velocity of an object traveling in the positive direc-
tion increases by 8 m/s in 5 s . What is its acceleration
in m/s2 ?

(a) 1.0 (b) 1.2 (c) 1.4 (d) 1.6

12. The position of an object varies as x = t3 (meters). What
is its acceleration at time t = 1 s in m/s2 ?

(a) 2 (b) 4 (c) 6 (d) 8
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13. The gravitational acceleration of the Moon is less than
that of the Earth. Which of the following is true for a
stone dropped from a height on the Moon?

(a) It falls to the ground in less time than on the Earth.
(b) It falls to the ground in more time than on the Earth.
(c) It falls to the ground in the same time.
(d) None of the above.

14. A bicycle rider traveling at 10 m/s presses the brakes
and stops in 5 s . How many meters does the bike travel
before stopping?

(a) 10 (b) 15 (c) 20 (d) 25

15. The positions of an object at times t = 1, 2, 3, 4 s are
x = 2, 7, 9, 15 m , respectively. What is the average ve-
locity of this object in the [2, 4] s interval in m/s?

(a) 1 (b) 2 (c) 3 (d) 4

16. Which of the following propositions is true?
(a) The acceleration of an object traveling at constant
velocity is zero.
(b) The acceleration of an object slowing in the negative
direction is positive.
(c) The acceleration of an object getting faster in the
negative direction is negative.
(d) All of the above.

17. What are the ratios of the distances traveled by an ob-
ject getting faster with constant acceleration in 1, 2, 3
seconds?

(a) 1:2:3 (b) 1:3:5 (c) 1:4:8 (d) 1:4:9

18. A stationary object speeds up with constant acceleration.
What are the ratios of the distances it travels at the 3rd
and 4th seconds?

(a) 3/4 (b) 5/7 (c) 7/9 (d) 9/16

19. Two stones are thrown upwards from the ground with
velocities v0 and 2v0 . What is the ratio of the maximum
height of the faster one with respect to the other?
(a) 2/1 (b) 4/1 (c)

√
2/1 (d) 1/

√
3

20. Two objects start to move from the same position at
the same time and in the same direction. The object
A travels at constant velocity of 10 m/s . The object B
accelerates at a rate of 4 m/s2 . After how many seconds
will the two objects be in the same position again?

(a) 2 (b) 3 (c) 4 (d) 5

Problems

2.1 Position, Displacement, Velocity and Ac-
celeration

Problem 2.1

2.1 The positions of an object at various times are shown in
the �gure above. (a) Find the displacements in the [t1, t2] and
[t2, t3] time intervals. (b) Calculate the average velocities in
the same intervals.

[A: (a) ∆x = 4 m ve ∆x = −2 m , (b) vav = 4 m/s
and vav = −0.67 m/s ]

2.2 The position of a moving object varies in time as x = 5t2

(meters). (a) What are its positions at times t = 1 s and
t = 3 s? (b) What is its average velocity in the t : [1, 3] time
interval? (c) What are its instantaneous velocities at times
t = 1 s and t = 3 s?

[A: (a) 5 and 45m , (b) 20 m/s , (c) 10, 30 m/s .]

Problem 2.3
2.3 The velocities of an object at various times are shown
in the �gure above. (a) Find the average accelerations in the
[t1, t2] and [t2, t3] time intervals.

[A: aav = 2 m/s2 and aav = −3.3 m/s2 .]

2.4 The velocity of an object varies as v(t) = 20 − 3t2 .
(a) Calculate its average acceleration in the t = [1, 2] s time
interval. (b) Find its instantaneous accelerations at times
t = 1 and t = 2 s .

[A: (a) aav = −9 m/s2 , (b) a = −6, −12 m/s2 .]

2.5 A ball hits a wall perpendicularly with a speed of 24 m/s
and is rebounded back at the same speed. The ball has con-
tacted the wall for 0.03 s . (a) What is the change in velocity?
(b) What is the average acceleration during the collision?

[A: (a) 48 m/s , (b) 1600 m/s2 .]
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2.2 Motion With Constant Acceleration

2.6 In order to make a safe landing, an airplane has to touch
the ground at a maximum speed of 120 m/s and slow down
with a maximum acceleration of 5 m/s2 . (a) In how many
seconds can the plane stop? (b) What should the minimum
length of the runway be? [A: (a) 24 s , (b) 1440 m .]

2.7 An object moving with constant acceleration passes
through two points 25 m apart at a velocity of 10 m/s from
the �rst and 15 m/s from the second. (a) What is the accel-
eration of the object? (b) In how many seconds will it travel
between the two points? [A: (a) a = 2.5 m/s2 , (b) t = 2 s .]

2.8 An object moving with a constant acceleration passes
between two points 10 m apart in 2 s . It has a velocity of
8 m/s when passing through the second point. Find the ac-
celeration of the objects and its velocity at the �rst point.

[A: a = 3 m/s2, v0 = 2 m/s .]

2.9 A train departing from a station accelerates at a rate of
2 m/s2 for 12 s . It then travels for 5 s at constant velocity.
Finally, it decelerates at 4 m/s2 and stops at the second sta-
tion. What is the distance between the two station in meters?

[A: 336 m .]

2.10 A jet airplane can accelerate at a maximum rate of
4 m/s2 on the runway and can takeo� once it reaches a ve-
locity of 80 m/s . However, if the pilot changes his/her mind
about the takeo�, the plane can be slowed down at a max-
imum rate of 5 m/s2 . In an emergency, the pilot changes
his/her mind about takeo� when the plane is at the takeo�
velocity. What should the minimum total length of the run-
way be so that the airplane can stop safely? [A: 1440 m .]

2.11 The maximum acceleration of a train is 8 m/s2 . This
train should travel between two stations 1800 m apart in
the shortest time possible. For this purpose, it accelerates in
the �rst half of the path and decelerates in the second half,
stopping at the station. Calculate the maximum velocity that
the train can reach and how many seconds it takes to travel
the path. [A: v = 120 m/s and t = 30 s .]

Problem 2.12
2.12 The driver of a sports car traveling at velocity 34 m/s
suddenly sees a truck 30 m ahead, traveling in the same direc-
tion with a constant velocity of 4 m/s , and applies the brakes.
If the car can decelerate at a maximum rate of 6 m/s2 , will it
crash into the truck from behind? (Hint: Solve the equivalent
problem of a stationary truck and a car with di�erent veloc-
ity.)

[A: It crashes. The car needs at least 95 m to slow down
before crashing.]

2.13 An automobile is trying to pass a trailer truck that has a
length of 20 m . At the start, the automobile and the truck are
in the same lane and traveling at the same constant velocity
of 15 m/s . Once the opposite lane is empty, the automobile
passes to the left lane and starts to accelerate at 5 m/s2 , man-
aging to pass the truck once it reaches its front end. (a) How
long does it take for the automobile to pass the truck? (b)
What length would the empty lane need to be for this pass-
ing? (Note: The length of the automobile is added to that of
the truck and can be neglected.) [A: (a) 2.8 s , (b) 62 m .]

Problem 2.14
2.14 A motorcycle waiting at a red lights starts to acceler-
ate at 5 m/s2 once the light changes to green. Just at that
moment, a truck traveling at a constant velocity of 8 m/s con-
tinues on its way through the green light without changing
its velocity. (a) When will the motorcycle catch up with the
truck? (b) How much distance has the motorcycle traveled
once it catches up? [A: (a) t = 3.2 s , (b) x = 25.6 m .]

2.3 Free Fall

2.15 A stone is thrown downwards with a velocity of 20 m/s
from the roof of a building at a height of 105 m . (a) How long
will it take to reach the ground? (b) With what velocity will
it hit the ground? [A: (a) 3 s , (b) 50 m/s .]

2.16 A stone is dropped into a water well and the sound of
the stone hitting the water’s surface is heard 4.5 s after it
was dropped. Since the propagation speed of sound in air is
340 m/s , how deep down is the surface of the water at the
bottom of the well? [A: 90 m .]

2.17 After throwing a ball upwards, a juggler runs to and
then back from a door at a distance of 9 m with a velocity of
5 m/s , catching the ball before it falls to the ground. At what
minimum velocity should he/she throw the ball upwards to
be able to do this? [A: 18 m/s .]

Problem 2.18

2.18 A ball is dropped from the roof of a building. A man
standing behind a window on one of the lower �oors sees the
ball pass his window in 0.2 seconds. The height of the win-
dow is 1.80 m . How high is the roof from the upper edge of
the window? (Hint: The given information is su�cient to �nd
the velocity of the stone at the upper edge of the window.)

[A: 3.2 m .]



PROBLEMS 37

Problem 2.19

2.19 A monkey sitting in a tree by the road on a branch 6 m
above the ground wants to drop on a truck approaching with

a velocity of 20 m/s . At what distance d between the truck
and the tree should the monkey start to drop in order to land
on the truck? [A: 22 m .]

2.20 A juggler throws a ball such that it barely touches the
ceiling of the hall, which is 5 m high. (a) What is the initial
velocity of the ball? (b) If he throws a second ball upwards
with the same velocity when the �rst ball is at the level of
the ceiling, when and at what height will the two balls meet?

[A: (a) 10 m/s , (b) 0.5 s and 3.75 m .]



3
TWO-DIMENSIONAL

MOTION

An acrobatic stunt at a mo-
tocross race.
The racer is moving in both
the horizontal and vertical di-
rections. Can we examine both
of these movements within the
same framework?

A bird �ying through the air, a �sh swimming in water, a free throw in
basketball, a spacecraft �ying past a planet, etc. How can the motion of all these
objects be examined? We cannot apply the method that we discussed in the
previous chapter directly because these objects do not move in a straight line.
In a three-dimensional Cartesian coordinate system, the coordinates (x, y, z) of
these objects simultaneously vary depending on time t :

x = x(t) , y = y(t) , z = z(t)

Notice that, when an object is moving in space, each of the coordinates travels
along its own axis, in other words, it performs linear motion! Therefore, we can
apply the concepts that we developed for linear motion to each of the (x, y, z)
coordinates. Then, we can unify them using vectors.

In this course we will only examine two-dimensional motion. The methods
that we will develop can easily be extended to three-dimensional motion.
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3.1 POSITION AND DISPLACEMENT VECTORS

Let (x, y) be the coordinates of a point P in the xy coordinate system. The
vector drawn from the origin to this point is called the position vector and is
indicated by ~r . As seen in the �gure, the components of this vector ~r are the
coordinates of the point P :

~r = x ı̂ + y ̂ (3.1)

Figure 3.1: Position vector. Displacement Vector
If an object located at point P1 with position ~r1 at time t1 , is located at point

P2 with position ~r2 at a later time t2 (Figure 3.2), the vector

∆~r = ~r2 −~r1 = (x2 − x1) ı̂ + (y2 − y1) ̂ (3.2)

is called the displacement vector. As seen in the �gure, the vector ∆~r =
−−−−→
P1P2

is the secant line that intersects the trajectory at P1 and P2 .
The average velocity vector ~vav of the object during this time interval ∆t

is the ratio of the displacement vector to the time di�erence:
Figure 3.2: Displacement vec-
tor. ~vav =

∆~r
∆t

(3.3)

This is the application of the de�nition in one-dimensional motion to both com-
ponents. If we write more explicitly,

~vav =
~r2 −~r1

t2 − t1
=

(
x2 − x1

t2 − t1

)
ı̂ +

(
y2 − y1

t2 − t1

)
̂ =

∆x
∆t
ı̂ +

∆y

∆t
̂

vav,x =
∆x
∆t

, vav,y =
∆y

∆t
Likewise, the instantaneous velocity vector (or, simply, the velocity vector), is
obtained by taking the derivative as in one dimension:

~v = lim
∆t→0

∆~r
∆t

=
d~r
dt

(3.4)

We understand the following from the derivative of a vector: The derivatives of
the x and y components of that vector are taken separately, and these become
the components of the derivative vector:

~v =
d~r
dt

=
dx
dt︸︷︷︸
vx

ı̂ +
dy
dt︸︷︷︸
vy

̂ = vx ı̂ + vy ̂

The magnitude (absolute value, norm) of the velocity vector and its angle with
the +x axis are found using familiar formulas:

v = |~v | =
√
v2

x + v2
y , tan θ =

vy

vx
(3.5)

What is the direction of the velocity vector? In order to determine this, let us
consider the secant ∆~r =

−−−−→
P1P2 . The −−−−→P1P2 vector is in the direction of motion

(Figure 3.3). Also, as ∆t → 0 , P2 will gradually approach the point P1 , and in the
end, the secant P1P2 will come to the tangent line. Therefore, in two-dimensional
motion, the velocity vector is always tangent to the trajectory.
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Figure 3.3: (a) Limit direction of
the displacement vector, (b) di-
rection of the ~v velocity vector.

Acceleration Vector
Acceleration is the rate of change of velocity with respect to time. In order

to extend this to two-dimensional motion, we use the same method for the
components.

De�nition: If the velocity vector of an object at time t1 is ~v1 and its velocity
vector at a later time t2 is ~v2 (Figure 3.4), then the average acceleration vector
is

~aav =
∆~v
∆t

=
~v2 − ~v1

t2 − t1
(3.6)

Figure 3.4: ∆~v = ~v2 − ~v1 vector.

or, in terms of the components,

aav,x =
∆vx

∆t
=
v2x − v1x

t2 − t1
, aav,y =

∆vy

∆t
=
v2y − v1y

t2 − t1
Accordingly, the instantaneous acceleration vector (or, simply, the accelera-
tion vector) is found by taking the limit of average acceleration:

~a = lim
∆t→0

∆~v
∆t

=
d~v
dt

(3.7)

or, more explicitly in terms of the components,

~a =
d~v
dt

=
dvx

dt︸︷︷︸
ax

ı̂ +
dvy
dt︸︷︷︸
ay

̂ = ax ı̂ + ay ̂

As the velocity vector is the derivative of position, we can also write the accelera-
tion as the second derivative of position:

~a =
d~v
dt

=
d2~r
dt2 (3.8)

The magnitude and the angle of the acceleration vector are,

a = | ~a | =
√

a2
x + a2

y , tan θ =
ay
ax

(3.9)

In two-dimensional motion, the direction of the acceleration vector does not
necessarily have to be along the path and may be in any direction depending on
the type of motion.



42 3. TWO-DIMENSIONAL MOTION

Example 3.1

The coordinates of an object moving on a plane are given as,
x = t3 − 2t2 + 5 (m)
y = 3t2 − 4t + 4 (m)

(a) Express velocity and acceleration as functions of time.
(b) Calculate the components of position, velocity and accel-

eration at time t = 1 s .
(c) Find the magnitudes of velocity and acceleration at time

t = 1 s .
(d) Find the angle between velocity and acceleration at time

t = 1 s .

Answer
(a) Derivatives of the position components with respect to
time give the velocity components:

vx =
dx
dt

= 3t2 − 4t (m/s)

vy =
dy
dt

= 6t − 4 (m/s)

Derivatives of the velocity components give the acceleration
components:

ax =
dvx

dt
= 6t − 4 (m/s2)

ay =
dvy
dt

= 6 (m/s2)

(b) We �nd the components by taking t = 1 in these expres-
sions for x, v, a :

x = 4 y = 3
vx = −1 vy = 2
ax = 2 ay = 6

(c) We calculate the magnitudes of the vectors with the given
components:

v =

√
v2

x + v2
y =

√
(−1)2 + 22 =

√
5 = 2.2 m/s

a =

√
a2

x + a2
y =
√

22 + 62 =
√

40 = 6.3 m/s2

(d) The angle between the two vectors is found using the
scalar product method (Eq. 1.10):

cos θ =
~v · ~a
v a

=
(−1) × 2 + 2 × 6
√

5
√

40
=

√
2

2
From here, the angle is found to be θ = 45◦ .

3.2 PROJECTILE MOTION

The �rst example of two-dimensional motion that we examine will be the
motion of objects thrown into the air near the Earth’s surface under gravitational
acceleration. Neglecting air resistance and other small e�ects, the acceleration is
always downwards and towards the center of the Earth. Choosing the coordinate
system shown in Figure 3.5, its components can be written as,

ax = 0
ay = −g

}
−→ ~a = −g ̂ (3.10)

The components of motion can easily be deduced from this: We observe uniform
linear motion in the horizontal x direction and motion with constant acceleration
in the vertical y direction We examined both types of motions in Chapter 2. Now,
we can write those formulas for each component.

Figure 3.5: Coordinates in pro-
jectile motion. As the horizontal
x component does uniform lin-
ear motion, the vertical y com-
ponent does free fall motion.

Let us consider an object thrown from the surface of the earth with an initial
velocity of v0 with an angle of θ to the horizontal (Figure 3.5). The components
of the initial velocity can be written as follows:

v0x = v0 cos θ v0y = v0 sin θ (3.11)
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Choosing the place where the object was thrown as the origin and the y direction
as upwards, we can write the projectile motion formulas:

vx = v0 cos θ x = (v0 cos θ) t
vy = v0 sin θ − gt y = (v0 sin θ) t − 1

2 g t2 (projectile motion) (3.12)

Trajectory equation: If we wish to �nd the trajectory, or the curve drawn
by the object in the air regardless of its position at any given time, we eliminate t
from these equations. Taking t = x/v0 cos θ from the x position formula and
substituting it into the y equation and simplifying, we get the trajectory equation:

y = (tan θ) x −
g

2v2
0 cos2 θ

x2 (Trajectory equation) (3.13)

This is the equation of a parabola. (Figure 3.5).
If the object is thrown not from the origin, but from any initial position

(x0, y0) , it is su�cient to add x0 and y0 to the equations above:

x = x0 + (v0 cos θ) t
y = y0 + (v0 sin θ) t − 1

2 g t2 (3.14)

These formulas are valid for all types of projectile motion in which the air
resistance can be neglected. It is not necessary to develop separate formulas
for the maximum height or the horizontal range. For example, since θ = 0 for
a horizontal projectile, it is su�cient to have sin θ = 0 and cos θ = 1 in the
formulas:

vx = v0 vy = −gt
x = x0 + v0t y = y0 −

1
2 g t2 (horizontal projectile) (3.15)

Likewise, it is su�cient to know that the y component of velocity is zero (vy = 0)
at the maximum height.

Example 3.2

A ball kicked by a football player rises with an initial velocity
of 30 m/s at an angle of 37◦ to the horizontal.

(a) Write the equations of motion of the ball.
(b) What are the position and velocity components of the ball

at time t = 1 s?
(c) In how many seconds does it reach maximum height?
(d) What is the maximum height of the ball?
(e) How far away will the ball land on the ground?

Answer
(a) First, calculate the components of the initial velocity:

v0x = v0 cos 37◦ = 30 × 0.8 = 24 m/s

v0y = v0 sin 37◦ = 30 × 0.6 = 18 m/s

We choose the origin at the kicking point, and the equations

of motion (3.12) follow:

vx = v0 cos 37 = 24 vy = v0 sin 37◦ − gt = 18 − 10t

x = v0 cos 37 t = 24 t y = v0 sin 37◦ t − 1
2 g t2 = 18t − 5t2

(b) Plugging t = 1 into these expressions,
vx = 24 m/s vy = 18 − 10 × 1 = 8 m/s
x = 24 m y = 18 − 5 = 13 m

(c) At maximum height the motion becomes horizontal, in
other words, y component of velocity vanishes:

vy = 18 − 10t = 0 → t = 1.8 s
(d) The y value at this t = 1.8 s gives the maximum height:

ymax = 18 × 1.8 − 5 × 1.82 = 16.2 m
(e) The range of the ball, in other words, the horizontal dis-
tance of the falling point is the value of the x coordinate at
t = 2 × 1.8 = 3.6 s . The range is shown as R :

R = xmax = 24 × 3.6 = 86 m
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Example 3.3

A ball is thrown at an angle of 53◦ towards a wall 9 m away.
The ball collides with the wall at height of 7 m . What is the
initial velocity of the ball?

Answer
Since no time is involved, the trajectory equation will give
the quickest solution. Using the values x = 9 m , y = 7 m ,
cos 53◦ = 0.6 and tan 53◦ = 4/3 in the trajectory formula
(3.13), we get

y = (tan θ) x −
g

2v2
0 cos2 θ

x2

7 =
4
3
× 9 −

10
2v2

0 × 0.62
× 92

v2
0 = 225 → v0 = 15 m/s .

Example 3.4

A motorcycle rider wants to jump o� of a cli� at a height of
20 m with a horizontal velocity of v0 and get to the other side
of a river that is 9 m wide.
(a) What is the time of �ight of the motorcycle?
(b) What should the minimum initial velocity of the motorcy-

cle be in order to cross the river?
(c) With what velocity will the motorcycle touch the ground?

Answer
Let us chose the origin at the ground level directly below the

jumping point and the y axis upwards. Since the motorcycle
jumps horizontally, we take θ = 0◦ in the projectile motion
formulas (3.12):

vx = v0 x = v0t
vy = −gt = −10t y = y0 −

1
2gt2 = 20 − 5t2

(a) The y coordinate should be zero when the motorcycle
falls to the ground:

0 = 20 − 5t2 → t = 2 s

(b) In order to pass the river, its x coordinate should be greater
than or equal to 9 m at the time t = 2 s when it touches the
ground:

x = v0t → 9 = v0 × 2 → v0 = 4.5 m/s

(c) We calculate the velocity components at time t = 2 s :
vx = v0 = 4.5 m/s vy = −10t = −20 m/s

The negative sign of the vy component shows that it is down-
wards. We calculate the magnitude of the velocity using these
components:

v =

√
v2

x + v2
y =

√
(4.5)2 + (−20)2 = 21 m/s

Example 3.5

A ball is thrown with at an angle of 53◦ and initial velocity
5 m/s from the roof of a building that is 33 m high. Waiting
directly below on the ground, a kid starts to run with constant
acceleration a at the same time and in the same direction as
the ball.

(a) Choose a coordinate system and write the equations of
motion for the ball and for the kid.

(b) What will the time of �ight of the ball be until it falls to
the ground?

(c) How far away from the building will the ball land?
(d) What should the acceleration of the kid be so that he/she

can catch the ball?

Answer
We �rst calculate the initial velocity components of the ball:

v0x = v0 cos 53◦ = 5 × 0.6 = 3 m/s
v0y = v0 sin 53◦ = 5 × 0.8 = 4 m/s

(a) Taking the origin at the place where the kid starts, the x
and y coordinates of the ball are as follows:

x1 = v0x t = 3 t
y1 = y10 + v0y t − 1

2 g t2 = 33 + 4t − 5t2

The kid accelerates in the x direction and does not move in
the y direction:

x2 = 1
2 at2 y2 = 0

(b) When the ball reaches the ground level, its y coordinate
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should be zero:
y1 = 33 + 4t − 5t2 = 0 → t = −11/5 and + 3 s

The solution is the positive value t = 3 s .
(c) We �nd the x position of the ball at this time t :

x1 = 3 t = 9 m
(d) The kid should arrive to the same position x = 9 m at the
same time t = 3 s as the ball:

x2 = 1
2 at2 → 9 = 1

2 a × 32 → a = 2 m/s2

Example 3.6

The outdoor elevator of a building starts to descend with a con-
stant speed u from a height of 8 m from the ground. At the
same time, a kid waiting on the ground at a horizontal distance
of 6 m from the building throws a ball towards the elevator
with a velocity of 20 m/s and at an angle of 53◦ .

(a) Choose a coordinate system and write the equations of
motion of the elevator and of the ball.

(b) After how many seconds will the ball hit the wall?
(c) At what height will the ball hit the wall?
(d) What should the velocity u of the elevator be so that the

ball will collide with the elevator?

Answer
We �rst calculate the initial velocity components of the ball:

v0x = v0 cos 53◦ = 20 × 0.6 = 12 m/s
v0y = v0 sin 53◦ = 20 × 0.8 = 16 m/s

(a) Taking the origin as the place where the ball is thrown,
the equations of the ball are as follows:

x1 = v0x t = 12 t y1 = v0y t − 1
2 g t2 = 16t − 5t2

The horizontal distance of the elevator is constant and it is
moving in the y direction with a constant downward speed:

x2 = 6 m y2 = y20 − ut = 8 − ut

(b) The ball will have traveled 6 m in the x direction when
it hits the wall:

6 = 12 t → t = 0.5 s
(c) We calculate the y position of the ball at this time t :

y1 = 16 × 0.5 − 5 × (0.5)2 = 6.75 m

(d) The elevator should be at the same y position at that time:
6.75 = 8 − u × 0.5 → u = 2.5 m/s

Example 3.7

Maximum range. What is the optimal angle for an object that
is always thrown at the same speed v0 so that its horizontal
range is maximum?

Answer
Let us use the trajectory equation to �nd the range formula.
y = 0 should be true when the ball is at the ground level.
This condition is used in the (3.13) trajectory formula:

0 = (tan θ) x −
g

2v2
0 cos2 θ

x2

Solution: x = 0 and x =
2v2

0 cos2 θ tan θ
g

The solution x = 0 is where the object was thrown. The
other solution is the range and is indicated by R . Us-
ing the trigonometric identities tan θ = sin θ/ cos θ and
2 sin θ cos θ = sin 2θ , we �nd the range formula as follows:

R =
v2
0 sin 2θ
g

For the same v0 initial velocities, the sine function should be
maximum for R to be maximum. The sine function takes its
maximum value 1 at 90◦ . Therefore,

2θ = 90◦ → θ = 45◦

For maximum range, objects should be thrown at an angle of
45◦ .

3.3 UNIFORM CIRCULAR MOTION

Centripetal Acceleration
The second important example of two-dimensional motion is the motion of an

object rotating at constant speed around a circle. Although the speed is constant,
the object has an acceleration, because the velocity changes direction. Let us try
to determine how this happens.

Let an object rotating with a constant speed v on a circle with radius r have
a velocity vector ~v1 at position P1 at time t1 and then a velocity vector ~v2 at
position P2 at a later time t2 (Figure 3.6a).

The magnitudes of these two velocities are the same: |~v1| = |~v2| = v . However,
they should be considered as two di�erent vectors, as their directions are di�erent.
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Figure 3.6: Velocity vectors and
∆~v di�erence vector in circular
motion.

Now let us remember the de�nitions of the average acceleration,

~aav =
~v2 − ~v1

t2 − t1
=

∆~v
∆t

and the acceleration vector ~a as the limit of this expression when ∆t → 0 :

~a = lim
∆t→0

∆~v
∆t

(3.16)

Since this acceleration is a vector, we must determine both its magnitude and its
direction. We start with the magnitude.

Now, what is this vector ∆~v? To get an idea about it, let us shift both vectors
to the midpoint of the arc on the circle, keeping their directions unchanged
(Figure 3.6b). The equal sides of the isosceles triangle formed are ~v1 and ~v2 while
the opposite side is ∆~v .

Let us compare this triangle with the triangle OP1P2 formed in the original
circle. These are similar triangles, because both are isosceles and both of their
apex angles are equal to ∆θ . (When the object turns by ∆θ , its velocity vector
also turns by the same amount.) Therefore, the ratios of similar sides are equal:

|∆~r |
r

=
|∆~v |
v

Here, we shall introduce a small error by using the length of the arc ∆s instead
of the length of the secant |∆~r | , but the di�erence will approach zero later when
we take the limit ∆t → 0 . Therefore, substituting |∆~r | ≈ ∆s ,

|∆~v | =
v∆s

r

and, taking the limit ∆t → 0 we get,

a = lim
∆t→0

|∆~v |
∆t

= lim
∆t→0

v∆s
r ∆t

=
v

r
lim

∆t→0

∆s
∆t

where we took the constants outside of the limit. The limit in this expression is
just the de�nition of speed v with which we are familiar, because it is the ratio
of the distance taken ∆s to the elapsed time: lim∆t→0 ∆s/∆t = v . Therefore, the
magnitude of the acceleration is as follows:

a =
v2

r

This magnitude is constant, because the radius r and the speed v are constant.
Next, we �nd the direction of the acceleration ~a . In Eq. (3.16), since ∆t is just

a scalar, the direction of ~a will be the same as the limit direction of ∆~v . Look
at Figure 3.6b again. As ∆θ → 0 , or velocity ~v2 gets closer to ~v1 , they align
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as almost parallel, with ∆~v becoming almost perpendicular to both. In terms
of angles, as ∆θ → 0 (Figure 3.7), the base angles of the isosceles triangle will
approach 90◦ . The vector ∆~v , hence ~a , being perpendicular to the velocity ~v ,
will point towards the center of the circle.

Therefore, in uniform circular motion, a constant acceleration will be formed
that is always directed towards the center (Figure 3.8). This is called centripetal
acceleration and is denoted by ar : Figure 3.7: As ∆θ → 0 , the ∆~v

vector is directed towards the
center of the circle.

ar =
v2

r
(centripetal acceleration) (3.17)

This formula can also be written in terms of period T , the time for one complete
cycle. As the distance traveled in one complete cycle is the perimeter length 2πr ,
the speed and the acceleration can also be expressed in terms of the period:

v =
2πr
T

ar =
4π2r
T 2 (3.18)

Figure 3.8: In circular motion,
the centripetal acceleration ~ar

is always towards the center at
every point.

Tangential Acceleration
If, along with the direction, the magnitude of the velocity also changes in

circular motion, a tangential acceleration (Figure 3.9) will arise in addition
to the centripetal acceleration. The expression of tangential acceleration is the
change in the magnitude of velocity:

at =
dv
dt

(3.19)

We will address tangential acceleration later in the discussion of rotational motion
in Chapter 7.

Figure 3.9: If the magnitude
of velocity also changes, a tan-
gential acceleration ~at is also
formed.

The acceleration ~a is the resultant of these centripetal and tangential acceler-
ations:

~a = ~ar + ~at (3.20)

Therefore, in the most general case, the acceleration ~a does not necessarily point
to the center, but may be in any direction.

Example 3.8

An object revolving in a circular orbit with a radius 80 cm is
observed to make 150 cycles per minute.
(a) What is the velocity of the object?
(b) What is the centripetal acceleration of the object?

Answer
(a) The constant velocity v is directly calculated as the ratio
of the traveled distance to time. As the circumference of the

circle is 2πr , the distance traveled in 150 cycles is divided by
1 minute:

v =
distance

time
=

150 × 2πr
60 s

= 5πr = 12.5 m/s

(b) The velocity found above is used in the centripetal accel-
eration formula (π2 ≈ 10) :

ar =
v2

r
=

(5πr)2

r
= 25π2r = 200 m/s2
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Example 3.9

The Global Positioning System (GPS) consists of around 20 satel-
lites revolving at an altitude of 20 000 km from the surface of
the Earth. Each satellite circles the Earth twice a day. The
Earth’s radius is approximately 6 400 km .

(a) Calculate the period of a GPS satellite.

(b) Calculate the centripetal acceleration of a GPS satellite.

Answer
(a) The period of a satellite, in other words, the time it takes
to complete one full cycle is half a day. We calculate this in
terms of seconds:

T = 1
2 × day = 1

2 × 24 × 60 × 60 = 43 200 s
(b) We use the formula that expresses centripetal accelera-
tion in terms of the period T . Here, r is the distance mea-
sured from the center of the circle. If the Earth’s radius is
R and the height of the satellite from the surface is h , then
r = R + h = 6400 + 20000 = 26400 km = 26.4 × 106 m . We
substitute these values (π2 ≈ 10 ):

ar =
4π2r
T 2 =

40 × 26.4 × 106

(43.2 × 103)2 = 0.57 m/s2 .

3.4 RELATIVE MOTION

Consider a rower pulling oars to move a boat along a river. From the shore, we
observe that the same rower moves faster when traveling in the same direction
as the current and slower when rowing against the current. In fact, the boat
may even be observed to go backwards when trying to go against the current.
Likewise, on an escalator, even if we stay still, people on the ground see us as
moving forward.

These observations remind us that concepts such as velocity and position are
relative, in other words, “they depend on the observer making the measurements.”
If the observer is moving, the velocity measured by him/her will be di�erent from
the velocity measured by an observer at rest. Therefore, it is important to know
the relation between such various measurements.

In one dimension, it is easy to see the relation between velocities. When a
swimmer with speed v in still water starts to swim in a river with a current speed
u , he/she will have a speed of v + u when swimming in the same direction as the
current, and v − u when swimming against the current.

To calculate relative velocities in two dimensions, let us consider two objects
positioned at points A, B at time t , and an observer standing at rest at the origin

Figure 3.10: The positions of
objects A and B with respect to
the observer O .

O. From Figure 3.10, we can see the following relations between these vectors:

−−→
OB =

−−→
OA +

−−→
AB

But these are just position vectors, namely:

−−→
OB = ~rBO : The position of object B with respect to origin O;
−−→
OA = ~rAO : The position of object A with respect to origin O;
−−→
AB = ~rBA : The position of object B with respect to object A.

Hence, while these positions change with time, we will always have:

~rBO = ~rAO +~rBA = ~rBA +~rAO (3.21)
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where we switched the order of the last two terms. By taking the derivative of
this expression with respect to time, we get velocities:

d~rBO

dt
=

d~rBA

dt
+

d~rAO

dt
~vBO = ~vBA + ~vAO

where each term can easily be identi�ed:

~vBO = The velocity of B with respect to origin O;
~vAO = The velocity of A with respect to origin O;
~vBA = The velocity of B with respect to A.

Accordingly, the relation between the velocities is as follows:

~vBO = ~vBA + ~vAO (relative velocity addition rule ) (3.22)

Here, we stress two points that are important for calculations:

• Notice that, when we switch the subscripts, we get a negative sign. For
example,

~vAB =
d~rAB

dt
=

d(−~rBA)
dt

= −~vBA

which is true for all velocities, ~vOB = −~vBO , etc.

• It is very easy to remember the velocity addition rule, Eq. (3.22). Notice
the ordering of the subscripts. We see that the inner subscripts ( A ) on the
right-hand side are the same. And the outer subscripts ( B,O ) are just those
on the left-hand side.
Hence, any velocity that you wish to obtain can be separated into two terms
into which you insert the missing subcript. For example, if we want ~vAB (the
velocity of A with respect to B ), we write:

~vAB = ~vAO + ~vOB = ~vAO − ~vBO

where, in the last term, we reversed subscripts to get the velocity of B with
respect to origin, hence we picked up a negative sign.

The relative velocity addition rule given in Eq. (3.22) is valid only in classic
physics, in which speeds are small compared to the speed of light. When the
speed of light is approached, we must use The Theory of Relativity developed by
Einstein.
Relative Acceleration

Let us reconsider Eq. (3.22) which gives us the velocity addition rule:

~vBO = ~vBA + ~vAO

The objects shall have acceleration if their velocities are changing in time. The
second derivative of this equation with respect to time will give the relation
between the accelerations:

~aBO = ~aBA + ~aAO (3.23)
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We will not use this general expression in this course. However, in order to draw
an important conclusion, let us assume that only the velocity of the object B
changes and the object A moves at constant velocity with respect to the origin.
In this case, ~aAO = 0 and we �nd that

~aBO = ~aBA (3.24)

This is an important results: Observers moving at constant velocities with respect
to each other observe the same acceleration in other objects. This result will make it
easier to understand the laws of dynamics later.

Example 3.10

A boat has a speed of 20 km/h in still water. The captain is
trying to cross a river that is 2 km wide. The current speed in
the river is 5 km/h .

(a) What will the speed and direction of the boat be with re-
spect to the ground if the captain heads straight across the
river?

(b) The captain wants to cross the river perpendicular to the
shore. In which direction should he keep the bow of the
boat so that its velocity observed from the ground is per-
pendicular? In such a case, what will its velocity be with
respect to the ground?

(c) Calculate the time to cross the river in both cases.

Answer
In order to apply the velocity addition formula, let us desig-
nate the river water with W , the boat with B , and the ground
with O . Accordingly, the given data are:
The speed of the water with respect to the ground:

vWO = 5 km/h

The speed of the boat with respect to the water:
vBW = 20 km/h

The velocity of the boat with respect to the ground: vBO =?

Velocity addition formula: ~vBO = ~vBW + ~vWO

This vector equality is valid for both questions.
(a) We get the situation observed in Figure (a) when the ve-
locity of the boat with respect to the water ~vBW is kept per-
pendicular to the water. Writing the hypotenuse and angle
formulas in this right triangle,

vBO =

√
v2

BW + v2
WO =

√
202 + 52 = 21 km/h

tan θ = vWO/vBW = 5/20 = 0.25 → θ = 14◦ .
(b) We get the situation observed in Figure (b) when the veloc-
ity of the boat with respect to the river ~vBW is kept at some
angle, such that the resultant velocity ~vBO is ensured to be
perpendicular to the shore. The triangle formulas give:

vBO =

√
v2

BW − v
2
WO =

√
202 − 52 = 19 km/h

sin θ = vWO/vBW = 5/20 = 0.25 → θ = 15◦ .
(c) If we denote the width of the river as L , the diagonal path
taken in part (a) will be L/ cos θ . Accordingly,

ta =
L

vBO cos 14◦
=

2
21 × 0.97

= 0.10 hour = 6 minutes .
The path taken in part (b) will be L . The crossing time is
calculated accordingly:

tb =
L
vBO

=
2

19
= 0.11 hour = 6.5 minutes .

Example 3.11

The velocities of two ships in the Mediterranean Sea are mea-
sured from the ground. Ship A is observed to be sailing at
25 km/h in the South-North direction and ship B at 40 km/h
in the East-West direction.

What are the magnitude and direction of the velocity of

ship B as observed by the captain of ship A?

Answer
If we denote the velocity of ship B with respect to A as
~vBA , we may write the relative velocity addition formula (by
following the subscripts correctly) as follows:

~vBA = ~vBO + ~vOA

Here, ~vOA is the velocity of the ground with respect to the
ship A and if we reverse it as ~vOA = −~vAO the formula we
seek is:

~vBA = ~vBO − ~vAO

The di�erence between these two vectors is shown in the
�gure. If we denote the angle at which the ship A observes
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the vector ~vBA as θ , we can calculate the velocity vBA and
the angle using the right triangle formulas:

vBA =

√
v2

BO + v2
AO =

√
402 + 252 = 47 km/h

tan θ =
vBO

vAO
=

40
25

= 1.6 → θ = 58◦

Example 3.12

The pilot of an airplane with a speed of 60 m/s in still air is
�ying by keeping the nose of the airplane directed towards the
North in a region where the wind is 20 m/s in the South-East
direction. What is the velocity of the airplane with respect to
the ground and its angle with the North?

Answer
Let the airplane be A , the wind W and the ground O . If we
add to the velocity of the airplane with respect to the wind

~vAW , the velocity of the wind with respect to the ground ~vWO ,
we �nd the velocity of the airplane with respect to the ground
in windy air ~vAO :

~vAO = ~vAW + ~vWO

These velocity vectors are shown in the �gure.
We use the Sine and Cosine theorems (Appendix B) to

solve this triangle:
c =
√

a2 + b2 − 2ab cos C (The cosine theorem)
sin A

a
=

sin B
b

=
sin C

c
(The sine theorem)

By comparing these two triangles, we calculate the requested
velocity vAO and its direction:

vAO =

√
v2

AW + v2
WO − 2vAWvWO cos 45

=

√
602 + 202 − 2 × 60 × 20 ×

√
2/2 = 48 m/s

sin θ
20

=

√
2/2
48

→ θ = 36◦

Multiple-choice Questions

1. Which of the following is true for an object moving in a
plane with a constant magnitude of velocity?

(a) The acceleration of the object may not be zero.
(b) The velocity of the object is parallel to the trajectory.
(c) The object may have centripetal acceleration.
(d) All of the above.

2. Which is true for a motion on any curved trajectory?
(a) Acceleration and velocity are in the same direction.
(b) The velocity vector is tangent to the trajectory.
(c) The velocity is perpendicular to the trajectory.
(d) Acceleration and velocity are perpendicular.

3. Two balls are thrown from the same height at the same
instant. Ball A is dropped in free fall, while ball B is
thrown in a horizontal direction. Which is true?

(a) A reaches the ground �rst.
(b) B reaches the ground �rst.
(c) They arrive at the same time.
(d) It is impossible to tell.

4. Which of the following remains constant in projectile
motion?

(a) The magnitude of velocity.
(b) The horizontal component of velocity.
(c) The vertical component of velocity.
(d) The angle of velocity.

5. Which is correct at the maximum height in projectile
motion?

(a) Velocity is zero.
(b) The horizontal component of velocity is zero.
(c) The vertical component of velocity is zero.
(d) Velocity is maximum.

6. Object A is revolving around a circle with radius r at a
constant velocity v . Object B is revolving around a circle
with radius 2r at velocity 2v . Which one has higher
centripetal acceleration?
(a) A (b) B (c) Equal (d) None.

7. Object A is revolving around a circle with radius r at
a constant velocity v . Object B is revolving around a
circle with radius 2r at velocity v/2 . Which one has
higher centripetal acceleration?
(a) A (b) B (c) Equal (d) None.

8. Which of the following is incorrect for an object per-
forming accelerated motion on a plane?

(a) The velocity vector may be constant.
(b) The velocity magnitude may be constant.
(c) The velocity direction may be constant.
(d) Velocity may change direction.

9. In how many seconds will an object dropped from a
height of 80 meters reach the ground?

(a) 1 (b) 2 (c) 3 (d) 4
10. Two objects are traveling in the same direction along a

straight line. Object A has a speed of 10 m/s and object
B has a speed of 4 m/s . Which of the following will be
observed by object A?
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(a) Object B moving away at 6 m/s.
(b) Object B moving away at 14 m/s.
(c) Object B approaching at 6 m/s.
(d) Object B approaching at 14 m/s.

11. Two objects are traveling towards each other in the oppo-
site directions along a straight line. Object A has a speed
of 10 m/s and object B has a speed of 4 m/s . Which of
the following will be observed by object A?

(a) B moving away at 6 m/s.
(b) B moving away at 14 m/s.
(c) B approaching at 6 m/s.
(d) B approaching at 14 m/s.

12. What is the cause of the centripetal acceleration in uni-
form circular motion?

(a) A change in the magnitude of velocity.
(b) A change in the direction of velocity.
(c) A change in position.
(d) Velocity being tangent to the trajectory.

13. A stone is dropped from the window of a moving train.
Which of the following is incorrect?

(a) Observer on the train sees the stone in free fall.
(b) Observer on the ground sees the stone in free fall.
(c) Observer on the ground sees a horizontal projectile
motion.
(d) None of the above.

14. Which of the following is incorrect for projectile mo-
tion?

(a) The time it takes to rise is equal to the time it takes
to fall.
(b) Speeds are the same in two directions at the same
height.
(c) The speed on the ground is maximum.
(d) The speed at the maximum height is equal to the
vertical component of the velocity.

15. In a horizontal projectile motion, the object falls to the
ground in t seconds. What will the time of �ight be if
the height is tripled?

(a) 3t (b)
√

3t (c) t/
√

3 (d) 9t

16. Which of the following is incorrect if the direction and
magnitude of velocity are changing in circular motion?

(a) There is centripetal acceleration.
(b) There is tangential acceleration.
(c) Acceleration is perpendicular to velocity.
(d) Acceleration can be in any direction.

17. You want to swim to the point right across you in a river
where the current runs from the left to the right. In
which direction should you swim?

(a) Right ahead.
(b) Towards the left.
(c) Towards the right.
(d) Halfway towards left and then towards the right.

18. A boy who can swim at 4 m/s in still water tries to swim
perpendicular to the shore in a river where the current
is 3 m/s . What will be its velocity and direction be as
observed from the ground?

(a) 4 m/s perpendicular to the shore.
(b) 5 m/s perpendicular to the shore.
(c) 5 m/s and 37◦ wide.
(d) 5 m/s and 53◦ wide.

19. A man wants to get upstairs with an escalator. The man
walks up the stairs in 6 s when the escalator is still. The
man gets upstairs in 3 s when the escalator is moving
and he is at rest on the steps. In how many seconds will
the man get upstairs by walking when the escalator is
moving?

(a) 1 (b) 1.5 (c) 2 (d) 2.5

20. Two objects are thrown at the same angle from the same
point. Object B reaches a maximum height that is 3 times
that of object A. What is the ratio of the initial velocity
of B with respect to A?

(a) 3 (b)
√

3 (c) 1/
√

3 (d) 9

Problems

3.2 Projectile Motion

Problem 3.1
3.1 A ball is thrown from the roof of a 40 m high building,
with a speed of 20 m/s at an angle of 30◦ to the horizontal.
(a) What is the time of �ight? (b) How far away from the

building will it hit the ground? (c) What are its velocity com-
ponents when the ball hits the ground?

[A: (a) 4 s , (b) 69 m , (c) vx = 17 vy = −30 m/s .]

Problem 3.2

3.2 A stone is thrown horizontally towards the sea from a
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45 m high cli�. There is a 20 m wide beach extending to-
wards the sea under the cli�. (a) What is the time of �ight?
(b) What should the minimum speed of the stone be in order
to land in the sea? [A: (a) 3 s , (b) 6.7 m/s .]

3.3 An athlete jumps up o� the ground with a speed of 8 m/s
and lands 6.2 m away horizontally. (a) At what angle has he
jumped? (b) How long does the jump take in seconds? (Hint:
Use the trajectory equation.) [A: (a) 37◦ , (b) 1 s .]

Problem 3.4
3.4 A rescue airplane �ying horizontally at a speed of 80 m/s
at an altitude of 50 m drops a relief package when a boat on
the sea is right underneath it. (a) In how many seconds will
the package fall to the sea? (b) How far away from the boat
will it fall? [A: (a) 3.2 s , (b) 256 m .]

Problem 3.5
3.5 A ball thrown horizontally from a height hits a wall that
is 20 m away at a point 15 m below. (a) What is the time of
�ight? (b) What is the initial speed of the ball?

[A: (a)
√

3 = 1.7 s , (b) 20/
√

3 = 11.5 m/s .]

Problem 3.6
3.6 A ball rolls o� of the edge of a 30◦ inclined roof whose
edge is 35 m above the ground. The ball falls to the ground
in 2 s . (a) What is its initial speed? (b) How far away from
the edge of the roof will it fall? [A: (a) 15 m/s , (b) 26 m .]

Problem 3.7
3.7 A ball is thrown at an angle of 37◦ to the horizontal and
with a speed of 20 m/s from one end of a horizontal platform,
which is 48 m long and 32 m high. At the same time, a kid

standing next to the platform wall on the ground starts to
run with acceleration a . What should the acceleration a be
so that the kid can catch the ball? What is the time of �ight
of the ball? [A: a = 2 m/s2 , t = 4 s .]

3.8 A basketball player shoots the ball at the basket, which
is 4 m away and 2 m high from the level of his hand. Since
the throwing angle is 53◦ , what should the initial velocity be
in order to make a basket? [A: 8.2 m/s .]

Problem 3.9
3.9 A gunner located on a 140 m high hill can �re shells
with an initial speed of 100 m/s and at an angle 37◦ with the
horizontal. Observing that a tank is approaching with a con-
stant speed of 10 m/s on a horizontal path on the ground, the
gunner �res when the tank is at a distance d . What should
the distance d be for the shell to hit the tank? What is its
time of �ight? [A: d = 1260 m and 14 s .]

Problem 3.10
3.10 An outdoor elevator of a building is descending at a con-
stant speed of 7 m/s . As the elevator passes through height
h , a boy located on the ground 36 m away from the building
throws a ball towards the elevator with an initial speed of
20 m/s and at an angle of 53◦ .
What should the height h be in order for the ball to hit the
elevator? What is the time of �ight of the ball?

[A: h = 24 m and 3 s .]

3.3 Uniform Circular Motion
3.11 What is the centripetal acceleration of a point on the
Earth’s surface due to its rotation about its own axis? The
Earth’s radius is 6400 km . [A: 0.03 m/s2 .]

3.12 A racing car must have a maximum centripetal accelera-
tion of 9 m/s2 in order to go around a curve without slipping.
At what maximum speed can it take a circular curve with a
radius of 150 m? [A: 37 m/s .]

3.13 The human body can withstand a maximum of 9g of
acceleration. What is the minimum radius of the loop that a
pilot can make in the air with a �ghter jet having a speed of
900 km/h ? [A: 694 m .]

3.14 Protons are accelerated at the European Nuclear Re-
search Center (CERN) and caused to collide at very high
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energies. According to the most recent data, protons make
11 000 revolutions in 1 second in a circular trajectory whose
perimeter is 27 km long. What is the centripetal acceleration
of the protons? [A: 21 × 1012 m/s2 .]

3.15 The Earth rotates around the Sun in 365 days in an orbit
with an approximate radius of 15 × 107 km . The planet Mer-
cury rotates in 88 days around an orbit with an approximate
radius of 6 × 107 km . Calculate the ratio of the centripetal
acceleration of Mercury with respect to Earth.

[A: ar(Mercury)/ar(Earth) = 7 .]

3.4 Relative Motion

3.16 The velocity of a boat in a river is 10 m/s when it sails
in the same direction as the current, and 4 m/s when it sails
against the current. Calculate the speeds of the boat and the
current. [A: 7 m/s and 3 m/s .]

Problem 3.17
3.17 The pilot of an airplane with a speed of 60 m/s in still
air is �ying by keeping the nose of the airplane directed to-
wards the North in a region where the wind is 20 m/s in the
North-East direction. What is the velocity of the airplane
with respect to the ground and its angle with the North?

[A: 75 m/s and θ = 11◦ .]

Problem 3.18

3.18 The pilot of an airplane with a speed of 200 km/h in
still air wants to �y in the South-North direction on a day
when the wind is 60 km/h in the East-West direction. In
which direction should he keep the nose of the airplane and
what will be the velocity of the airplane with respect to the
ground?

[A: 17◦ with the North towards the East and 191 km/h .]

3.19 The velocities of two airplanes in the air are measured
from the ground. Airplane A is observed to be �ying at
250 km/hour in the South-North direction and airplane B at
200 km/hour in the East-West direction. What are the mag-
nitude and direction of the velocity of plane A as observed
by the pilot of B?

[A: 320 m/s and 39◦ with the North towards the East.]

3.20 The captain of a ship A sailing at a velocity of
60 km/hour in the South-North direction observes another
ship B as sailing with a velocity of 50 km/hour in the West-
East direction. What is the velocity and direction of ship B
with respect to the ground?
[A: 78 km/hour and 40◦ with the North towards the East.]
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The Ariane 5 rocket starts its
space journey on April 22, 2011.
Developed by the European
Space Agency (ESA), this rocket
broke a record in carrying 9.6
tons of payload into space by
freeing it from the gravitational
pull of the Earth.
The fundamental cause that gen-
erates motion is the force. But
what exactly is the connection
between force and motion?

In the previous chapters, we have examined the motion in terms of position,
velocity and acceleration, but have not discussed the question of what causes
objects to move? We know from our daily lives that a force is necessary to set
objects into motion. Every object acts in a di�erent manner, depending on its
own mass under such forces.

Throughout history, many scientists have examined the e�ect of forces on
the motion of objects. Galileo was the �rst to establish many of the features
of motion. Ultimately, English scientist Isaac Newton (1642–1727), building on
the Galileo’s results, was able to lay the foundations for the modern science of
Mechanics, in his book Principia Mathematica.

Newtonian mechanics was believed to be the absolute truth for about 200
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years. Around the 1900s, these laws were found to give incorrect results both for
particles at the atomic scale and for particles traveling close to the speed of light.
Two modern theories were later developed, one for microscopic scales (Quantum
Mechanics) and the other for large speeds (Relativistic Mechanics). However,
Newtonian mechanics continues to remain valid for macroscopic objects.

4.1 NEWTON’S LAWS

Newtonian Mechanics is based on three simple and reasonable laws. By
accepting these laws without proof, you can explain the motion of all objects,
from stones and balls to cars, from rockets and bullets to stars and planets.

Let us state and discuss Newton’s laws in order.
Newton’s First Law

Discovered by Galileo, the �rst law regards objects upon which no net force
is acting:

Newton’s First Law

If the net force on an object is equal to zero, the object will either
remain at rest, or continue in a straight line with the same constant
velocity:

~Fnet = 0 ⇐⇒ ~a = 0 (4.1)

The force ~Fnet in this law is the vector sum of many forces and is called the
net force or resultant force:

~Fnet = ~F1 + ~F2 + ~F3 + · · · =
∑

i

~Fi

Until Galileo, people believed in the following law by Aristotle: “Objects move
when a force is applied, and they stop if the force is removed.” Even today, many
people unaware of physics think in this manner. Indeed, doesn’t a book on a
tabletop that we push with our hand stop as soon as we withdraw our hand?
What is wrong with that?

Galileo answered this question by showing that an invisible friction force
was causing the object to stop. He devised very �ne experiments by perfectly
polishing wood and marble surfaces in order to reduce friction. Then, although

Figure 4.1: Why are these
sportswomen sweeping in front
of the moving curling stone?

they did not immediately stop when the driving force was removed, objects went
further, depending on how polished the surface was. He thus discovered the �rst
law.

We emphasize the following points about the �rst law:

• It is important that the net (resultant) force be zero in this law: Many forces
may be acting together on the object, but the law shall apply if their resultant
is zero.

• It is also easy to understand the “either, or” expression of the law: The
acceleration of the object is zero if it is either at rest or in uniform linear
motion.
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• The �rst law is actually the de�nition of the force. Notice that the arrow is
bidirectional in Eq.(4.1) expression of the law. It means that the reverse
statement is also true: If an object is accelerating, there must be a net force
acting on it. In other words, acceleration is a sign of the presence of force.

Newton’s Second Law
If there is a net force acting on an object, it will perform accelerated motion.

The amount of this acceleration gives us the second law.

Newton’s Second Law

The acceleration of an object is directly proportional to the net
force acting on it, and inversely proportional to the mass of the
object. The acceleration is in the same direction as the net force:

~Fnet = m ~a (4.2)

Galileo again found this law as a result of the �ne experiments that he con-
ducted using inclined planes. Galileo was able to show that the acceleration of
an object placed on an inclined plane, which he had polished to reduce friction,
increased as its slope was increased.

Let us stress some important points about the second law:

• The second law �xes the unit of force. This is a derived unit named the
Newton and abbreviated with (N) in the SI system. Writing the units of both
sides in the law’s expression, we get

1 N = 1kg·m/s2

More clearly, a force that gives 1 m/s2 acceleration to a 1-kg object will have
a magnitude of 1 Newton.

• The second law is a vector equation. In other words, this equation must be
true for each component in the xy -coordinate system:

~Fnet = m ~a ⇐⇒

{
Fx,net = m ax

Fy,net = m ay
(4.3)

• At �rst glance you may think that the �rst law is a special case of the second
law. Indeed, if we set ~a = 0 in the second law (4.2), we get ~Fnet = 0 which
gives us the �rst law, right? This thinking is incorrect, because the second
law is actually the de�nition of mass. If the �rst law did not specify what the
force was, the second law could not relate this to mass and acceleration.

• The second law de�nes mass as a measure of the object’s resistance to accel-
eration. In other words, if the same force is applied to two objects, it will be
more di�cult to accelerate the one with the larger mass (Figure 4.2). This

Figure 4.2: Which bucket is
harder to push?

property of objects “to resist acceleration” is called inertia. In other words,
mass is the measure of the inertial characteristic of objects.
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• For which observers are Newton’s laws valid? For example, an accelerating
observer will see a still object on the ground as accelerating in the reverse
direction and �nd an incorrect solution: He/she will observe acceleration
although there is net zero force. In order to reply to this question, let us
remember the topic of relative speed from Chapter 2. We had seen that
(Equation 3.24), observers making uniform linear motion with respect to
each other will measure the same acceleration. Therefore, Newton’s laws are
valid for observers in uniform linear motion with respect to each other. We call
these inertial reference frames.

Newton’s Third Law (Principle of Action and Reaction)
Did you ever think about how a person jumps up? The answer is simple: We

push the ground down with our feet and the ground pushes us up in the opposite
direction. So, we know instinctively that the ground will produce a reaction force.

Isaac Newton was the �rst to consider that every force always generates a
reaction. The third law determines the relation between this action and reaction.

Newton’s Third Law

If an object applies a force ~F12 on a second object, the second
object will always apply a force ~F21 equal in magnitude and op-
posite in direction on the �rst object:

~F21 = −~F12 (4.4)

Before rockets were built, some scientists claimed that it would be impossible
to �y in the vacuum of space, where there is no air. However, rockets are able to
�y in space by utilizing the reaction force generated when they discharge their
fuel in the reverse direction with a large thrust. This is possible with the third
law.

The points to pay attention to in applying the third law are as follows:

• Action and reaction are applied on di�erent objects. There can be a contradic-
tion if this distinction is not made.
As an example, consider a horse-drawn carriage (Figure 4.3). How would
you reply to this statement: “If the horse pulls the carriage forward, the
carriage will pull the horse back with the same force in the reverse direction.
Therefore, both forces will cancel each other out and the carriage will not
move.” This reasoning is incorrect, because it ignores the fact that the action
and reaction are applied on di�erent objects. When examining one of these
objects, only the forces acting on that object should be taken into consideration.
The horse manages to not be pulled back by balancing the reaction force of

Figure 4.3: Forces on a horse
and carriage.

the carriage with the friction force that it generates on the ground. However,
the friction on the wheels of the carriage does not prevent it from going
forward, because it is very low.

• Only the external forces acting on an object are taken into consideration when
examining its motion. This is because internal forces mutually cancel each
other out according to the third law. Is it possible for a person inside of a
boat to make it move by pushing it? No. Let us examine the boat and the
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person inside as a whole. In this case, the action-reaction pair applied by
the person on the boat and by the boat on the person becomes the internal
forces of the system (boat+person) that we are examining, and their sum is
zero according to the third law.

• It is irrelevant to ask which of these forces between two objects is the action
and which is the reaction. Both arise simultaneously, in other words, there
is no causality between them. Only an action-reaction pair is mentioned in
order to state this fact.

4.2 TYPES OF FORCES IN MECHANICS

There are various types of forces that can lead to motion of objects. These
forces include the gravitational force and weight force as its special case, the
friction generated on surfaces and the normal reaction force and the tension force
on ropes. . . . One or more of these forces can be included in each problem. It is
not possible to �nd the correct solution unless we know how to take them into
consideration.

Now let us review the most important forces.
Weight (Gravitational force)

As we discussed in the free fall and projectile motion problems, any object
released near the Earth’s surface will accelerate with a constant acceleration g

towards the center of the Earth.
Interpreting this with the second law, we conclude that there must be a force

that causes such an acceleration (Figure 4.4). This special force is called weight
and its magnitude is indicated by W . As weight will ful�ll the F = ma law with
the acceleration g ,

W = mg (weight force) (4.5)

and it is a vertically downward force. For example, the weight of an object with a
mass of 1 kg is W = 1 × 9.8 ≈ 10 N . This force is present regardless of whether
the object is moving or not.

Figure 4.4: Weight is the force
that causes gravitational accel-
eration.

Some students may confuse the concepts of mass and weight. We can prevent
such confusion as follows: Weight is the attraction force that Earth applies to
objects. Objects will have di�erent weights on other planets and the Moon because
the gravitational attraction forces are di�erent there. However, the object has no
weight in empty space, where there is no other mass nearby.

Mass, on the other hand, is an intrinsic quality of the object and a measure of
its capability for acceleration. The object will have a mass regardless of where it
is in space. Here is a striking example that explains this: You can hold a rock with
a mass of 1 ton in space on your �ngertips, because it has no weight. But if you
kick that rock, you may break your foot, because it is very di�cult to accelerate,
having a very large mass.
Law of Universal Gravitation

Weight is a special case of a much more general attraction force. It is the
oldest of the four fundamental forces (gravitation, electromagnetism, nuclear
force and weak force). Gravitational force is what makes planets rotate around
the sun, keeps our satellite Moon in orbit around Earth and makes an apple fall
from a tree. Discovered by Isaac Newton, this law of universal gravitation (or
gravitational force) is expressed as follows:
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Newton’s Law of Universal Gravitation

Every object in the universe attracts every other object with a force
that is directly proportional to the product of their masses and in-
versely proportional to the square of the distance between them:

Fg = G
m1m2

r2 (4.6)

Figure 4.5: Law of gravitation.
The proportionality coe�cient here is G , the universal gravitational con-

stant, and it is one of the fundamental constants of physics:

G = 6.67 × 10−11 N·m2/kg2 (Universal gravitational constant) (4.7)

Now let us apply this law to an object with mass m near the Earth’s surface
(Figure 4.6). Let one object have mass m and the other object be the Earth, with
mass ME and radius RE . Accordingly,

Fg = G
mME

R2
E

= m
GME

R2
E


The expression inside of the brackets depends only on the mass and radius of the
Earth. The Earth’s mass is ME = 5.97×1024 kg and its radius is RE = 6.38×106 m .

Figure 4.6: Weight is caused by
the law of gravitation.

Using these values, we �nd the gravitational force acting on mass m :

Fg = m × (9.81 m/s2)

The constant factor has dimensions of acceleration and a value of 9.81 m/s2 . It
is just the gravitational acceleration g that we are familiar with. Hence, this
gravitational force is the weight W itself:

W = Fg = m g (Weight) (4.8)

g =
GME

R2
E

(The gravitational acceleration
on the Earth’s surface) (4.9)

This formula shows us how the gravitational acceleration g decreases with
increasing height. To �nd the value of g at a height h from the surface of the
Earth, it is su�cient to substitute (RE + h) for RE in this formula. Likewise,
the gravitational acceleration at the surface of the Moon or other planets can be
calculated using this method.

In calculating the gravitational force between objects with volume, the dis-
tance r in the formula is the distance between the centers of mass of the two
objects.

Example 4.1

A stone with mass m = 2 kg is descending in free fall. A vertical
force F is applied on it.
(a) What is the acceleration of the stone if F = 0?
(b) What is the acceleration of the stone if F = 5 downwards?
(c) What is the acceleration of the stone if F = 5 upwards?
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Answer
(a) Although there is no force F on the stone, there is still
the weight W = mg . According to the second law Fnet = ma ,
if we take W = mg for Fnet , we get a = g . In other words,
the object will continue its free fall with acceleration g .
(b) This time, in addition to the weight W , there is a force F

in the same direction. Using the second law,
Fnet = W + F = ma

mg+ F = ma → a = g+ F/m = 10 + 5/2 = 12.5 m/s2

(c) Writing the second law for the weight W and the force F
in the opposite direction,

mg − F = ma → a = g − F/m = 10 − 5/2 = 7.5 m/s2 .

Normal Force On Surfaces ( ~N )
Consider a book on a desk (Figure 4.7). We know that the book has a weight

and is pulled towards the center of the Earth with a force W=mg . If this force were
acting alone, then the book would have to go through the table and accelerate
downwards according to the F=ma rule.

However, the book is motionless, in other words, has zero acceleration. There-
fore, there should be another force acting upwards, opposite to the weight, so
that the net force can be zero. This force acting perpendicular to the surface and
always outwards from the surface is called the normal force and is indicated by
~N . It only appears when the object is in contact with the surface and disappears
when the objects leaves the surface. The source of the normal force is the complex
interactions between the molecules that constitute the table and the book.

Normal force is always perpendicular to the surface and large enough to prevent
the object from entering the surface. For example, in the case of the book on
the table, we had N=W (Figure 4.7). Now, let us consider an additional force
F pressing the book down towards the table. This time, the normal force will
increase to a value that counters both the W and F forces, in other words, we
have N = W + F .

Figure 4.7: The normal reac-
tion force N generated on the
surface of the table is always per-
pendicular to the surface.

The following question could come to mind here: “Doesn’t the normal force
have a reaction force?” Yes, it does. Indeed, there is an opposite force (−N)
applied by the book on the table. However, as we are only concerned with the
forces acting on the book, we did not deal with this (−N) force applied on the
table.

This (−N) force is what is measured when you step on a bathroom scale. If
someone presses down on your shoulder at that moment, the scale will add this
to your weight.

Example 4.2

A force of F = 12 N is applied at an angle of 37◦ with the
horizontal, on an object with mass m = 3 kg located on a
frictionless plane.

(a) Show all of the forces acting on the object.
(b) What is the acceleration of the object?

(c) What is the normal reaction force of the table?

Answer
(a) In addition to the force ~F applied on the object, there is the
downward weight W = mg and the vertical reaction force N
applied by the surface. These forces are shown in the �gure.
(b) If we choose the axes as shown in the �gure, the accelera-
tion will be in the x -direction. Since there is no acceleration
perpendicular to the table, the net force component is zero in
the y -direction. Therefore, the second law can be written as
follows for the components:

~Fnet = m~a →

{
Fx,net = ma
Fy,net = 0

The �rst equation gives the acceleration. In the x -direction
there is only Fx=F cos θ :



62 4. NEWTON’S LAWS OF MOTION

F cos 37◦ = ma → 12 × 0.8 = 3a → a = 3.2 m/s2

(c) The vertical component gives the normal reaction force N .
Here, in addition to the weight W , the vertical component of

F should also be included:
N + F sin 37◦ − mg = 0 → N + 12 × 0.6 − 3 × 10 = 0
N = 22.8 newton

As you can see, the reaction N may not always equal mg .

Friction Force
Let us again consider a book on a tabletop. Let us push this book with a force

F that is parallel to the table. Will the book move along the table? The answer
depends on the magnitude of the force. We know from experience that there
will be a friction force preventing motion and that it will be necessary to apply a
minimum force that is large enough to overcome the friction force.

We experience friction force in every aspect of our daily lives. In fact, we can
say that life would be impossible without friction. We would be unable to walk on
the ground or hold anything in our hands. On the other hand, many technologies
became possible through the reduction of friction. For example, without oil in
the engine of an automobile, it would be necessary to replace its cylinders and
pistons before it had traveled barely one kilometer.

Similar to the normal force, friction force arises only upon contact with a
surface. Both are a type of force called contact force. If we look closely at
the cross-section of the interface between the book and the table (Figure 4.8),

Figure 4.8: Friction force is
caused by the fact that surfaces
are rough.

we will observe rough edges at the microscopic scale, even if they are perfectly
polished. The atoms and chemical broken bonds at the tips of these rough surfaces
immediately interact and make weak bonds. When the object moves, these bonds
are broken and then immediately reformed along the path. They thus oppose the
motion.

Forces that oppose motion are also formed in liquids and gases. These have
di�erent characteristics. We shall only deal with the friction force between solid
surfaces.

Experiments have demonstrated the following features of friction force:
• Friction force is approximately the same regardless of which surface of the

object is in contact if all surfaces have the same roughness.
• The friction force is approximately constant regardless of the velocity of the

object.
Figure 4.9 shows the behavior of friction force as the applied force F increases.

When F is small, the friction force f adjusts itself in the opposite direction so
as to fully counter it, and the object does not move. This balancing continues
until it reaches a maximum value fmax and it can no longer counter the force
F , whereupon motion starts. Experiments show that this maximum value of the
friction force is proportional to the normal force on the surface:

Figure 4.9: Friction force acts
di�erently in static and kinetic
cases.

fmax = µN (4.10)
where the dimensionless coe�cient µ is the coe�cient of friction and depends
on the type and roughness of the surfaces.

The maximum value of the friction force slightly decreases after the object
starts moving (Figure 4.9). In order to describe this behavior, a coe�cient of
kinetic friction µk is de�ned for moving objects and a coe�cient of static
friction µs for objects at rest:

0 ≤ fs ≤ µsN (if the object is at rest)
fk = µkN (if the object is moving)

(4.11)
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Static and kinetic coe�cients of friction measured between certain surfaces
are given in the following table.

Friction coe�cients of certain surfaces

Surface Static friction, µS Kinetic friction, µK

Wood–wood 0.35 0.30
Steel–steel 0.80 0.50
Steel–ice 0.1 0.05
Rubber–dry asphalt 1.0 0.8
Rubber–wet asphalt 0.7 0.5

Figure 4.10: The inclination an-
gle of coal piles depends on fric-
tion force. If they get wet in a
rainfall, they may become dan-
gerous.

These values are approximate and may vary depending on whether the sur-
faces are rough or wet. For this reason, in the problems in this book, no static-
kinetic distinction shall be made and only the coe�cient µ shall be used.

Example 4.3

A block with mass m=3 kg is on a horizontal plane. The static
and kinetic coe�cients of friction between the block and the
surface are equal and have the value µ = 0.5 .
(a) A horizontal force F1 = 12 N is applied on this block.

What is the friction force?
(b) This time, a horizontal force F2 = 18 N is applied. What

is the acceleration of the block?

Answer
The forces acting on the block are shown in the �gure. As

we only have the weight W and the reaction force N in the
vertical direction, we get N = W = mg . We �rst calculate
the maximum value of the friction force:

fmax = µN = µmg = 0.5 × 3 × 10 = 15 N
(a) The force F1 = 12 N is less than the maximum value of
the friction force. Therefore, the friction force fully counters
F and the block does not move:

f = 12 N
(b) The block will move because the force F2 = 18 N is
greater than the maximum value of the friction force. The
friction force is at maximum value during motion:

f = fmax

We can �nd the acceleration using the second law:
Fnet = ma → F2 − f = ma
18 − 15 = 3a → a = 1 m/s2

Example 4.4

A block with mass m = 3 kg is on an inclined plane. The static
and kinetic coe�cients of friction between the block and the sur-
face are equal and have the value µ = 0.3 . A force F = 20 N
with an angle 37◦ below the horizontal is applied on this block.
Calculate the normal reaction force and the acceleration of the
block.

Answer
The forces acting on the block are shown in the �gure. If we
write the second law in terms of the components,

Fx,net = F cos 37◦ − f = ma
Fy,net = N − F sin 37◦ − mg = 0
The reaction force N is calculated from the second equa-

tion:
N = mg + F sin 37◦ = 30 + 20 × 0.6 = 42 N
Now, we must determine if there will be motion. For this

purpose, it is necessary to compare the F cos θ component
of the applied force along the direction of motion with the
maximum value of the friction force:

F cos 37◦ = 20 × 0.8 = 16 N
f = µN = 0.3 × 42 = 12.6 N

The block will start moving, because F cos θ > f . We can �nd
the acceleration by plugging these values into the expression
above for the x -component of the second law:

F cos 37◦ − f = ma → 16 − 12.6 = 3a
a = 1.1 m/s2
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Example 4.5

A block of mass m = 5 kg is placed on a plane inclined at 37◦ .
The static and kinetic coe�cients of friction between the inclined
plane and the object are equal and have the value µ = 0.2 .
(a) Show the forces acting on the object on a �gure.
(b) What is the friction force? Accordingly, will the object

move? If so, what is its acceleration?

Answer
(a) The three forces acting on the block are shown in the
�gure. Normal force N is perpendicular to the inclined plane.
As the object will try to slip downwards, the friction force f

must be opposite, hence upward along the inclined plane.
For the coordinate axes, we take the x -axis along the

inclined plane and towards the direction of motion, in other
words, downwards. The y -axis is taken as perpendicular to
the inclined plane.
(b) First, the y -component of the second law is written so as
to �nd the friction force from the normal reaction force:

Fy,net = N − mg cos 37◦ = 0 → N = mg cos 37◦

fmax = µN = µmg cos 37◦ = 0.2 × 5 × 10 × 0.8 = 8 N
The force moving the object is the component of weight along
the inclined plane:

mg sin 37◦ = 50 × 0.6 = 30 N > fmax , hence the object
will move.
The x -component of the second law is used to �nd the accel-
eration:

Fx,net = mg sin 37◦ − f = ma → 30 − 8 = 5a
a = 4.4 m/s2

Tension Forces on Ropes
The type of force applied by �exible objects such as ropes, cordes or cables is

called the tension force (or, simply, the tension). The most important feature of
the tension force is that it can only pull the object. You cannot push objects with
a rope, because it will bend quickly.

Let us hang a block with mass m from the ceiling by means of a �exible rope
(Figure 4.11). As this block is at rest, this means that the weight mg is balanced
by a tension T that is equal and opposite: T=mg . When a second mass is added,
the tension increases to balance the sum of their weights. Therefore, the tension
is an attractive force that always establishes balance, as long as the rope is not
broken.

Figure 4.11: Tension on a rope. Now, let us proceed towards the end of the rope hung from the ceiling. Ac-
cording to the third law, the lower and upper parts in any cross-section of the
rope will pull each other with equal tension forces in opposite directions. The
tension force at this height is usually not equal to the one at the lower end. This
is because the rope also has a mass, and this tension force is always equal to the
weight of the sum (object + rope below).

However, if the mass of the rope is small enough to be negligible, each cross-
section will keep the same T=mg value, and thus, when we reach the ceiling, the
tension on this end will also be T . Therefore, the tensions on both ends of a rope
with zero mass are equal. The tensions on both ends remain equal even if the rope
is moving.
Free-Body Diagrams

In dynamics, it is important to clearly state the examined system. If there
are multiple forces acting on multiple masses (Figure 4.12), these forces may be
separated into two groups:

Figure 4.12: Internal and exter-
nal forces acting on 3 masses.

1. Internal forces: Forces applied by the masses inside of the examined system
on each other (T1, T2, T3 in the �gure). According to Newton’s third law,
these forces will always be in pairs. These are not included in the equations,
because they are both positive and negative and cancel each other out.
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2. External forces: Forces originating from outside of the system ( Fa, Fb in
the �gure).

In order to better understand the issue, let us consider the forces acting on
masses m1,m2,m3 separately:
• If we are only considering the mass m1 as our system, each of the forces acting

on it (T1,T2, Fa ) are external forces (Figure 4.13) and should be included in
equations.

Figure 4.13: The free-body dia-
gram of mass m1 .

• If we are considering the masses together (m2+m3) as our system, this time,
the external forces are (T1,T2, Fb) . In this system, T3 is an internal forces
and is not taken into consideration, because it will appear twice in the
equations in opposite directions, hence canceling itself out.

• If the system is the total mass (m1+m2+m3) , then only Fa and Fb are ex-
ternal forces and the force pairs (T1,T2,T3) applied by the masses to each
other become internal forces and are not included in the equations.

After taking into consideration all of the external forces acting on a system,
we can show it as isolated, ignoring all other objects in its environment. This is
called a free-body diagram (Figure 4.13). For example, after showing the forces
T1,T2, Fa acting on mass m1 in the same system with three masses, we no longer
need to show the other masses, because we have already taken their e�ect into
consideration.

4.3 APPLICATIONS OF NEWTON’S LAWS

In this section, we will use Newton’s laws to solve examples of motion that
objects may undergo under the action of various forces.

Example 4.6

A painting frame with mass m = 5 kg is held in equilibrium,
hanging on the wall by two ropes with the angles given in the
�gure. Calculate the tensions in the ropes.

Answer
Each rope applies an attractive tension along itself. These are
shown as T1 and T2 in the �gure. We apply the �rst law, as
the object is at rest:

~Fnet = 0
This equality also applies to the components:
Fx,net = 0 → T1 cos 53◦ − T2 cos 30◦ = 0
Fy,net = 0 → T1 sin 53◦ + T2 sin 30◦ − mg = 0
We �nd T1 and T2 from these two equations:
T1 = 44 N and T2 = 30 N .

Example 4.7

Atwood’s machine. Two equal blocks with masses
M=10 kg are hung on two ends of a rope passing through a
pulley. The pulley is frictionless and the mass of the rope is
negligible. An additional small mass m=1 kg is placed on one
of the blocks.
(a) Show the forces acting on both blocks in a diagram. (You

do not have to show the forces acting on the pulley.)
(b) For each block, write the equations that give the accelera-

tion and the tension in the rope.
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(c) Solve this system of equations to calculate acceleration a
and tension T .

Answer
(a) The tensions on both ends of the rope are equal, because
it is assumed that the mass of the rope is negligible and the
pulley is frictionless. For the same reasons, both masses will
accelerate with the same acceleration a .

Hence, the forces are as shown in the �gure.
(b) The problem is one-dimensional. We apply the second
law in the vertical direction to each mass, in their direction
of motion:

Fnet = ma

For mass (M + m) : (M + m)g − T = (M + m)a
110 − T = 11a

For mass M : T − Mg = Ma
T − 100 = 10a

(c) By solving these two equations, we �nd acceleration a
and tension T :

a = 0.5 m/s2 and T = 105 N
Note: This setup is used in operating elevators and funiculars.
A small mass m can be used to easily accelerate a larger mass
M . If we had attempted to pull only the mass M upwards
with the same acceleration a , we would have had to use a
force F much larger than the force mg here.

Example 4.8

Two blocks withmasses m1=1 kg and m2=2 kg on a frictionless
horizontal plane are tied to each other with a rope. A horizontal
force F=5 N is applied on mass m1 .

(a) Draw a free-body diagram for each block.
(b) Find the acceleration and the tension in the rope by sepa-

rately considering the blocks m1 and m2 .
(c) Consider the blocks together and calculate the acceleration

of the (m1 + m2) system.

Answer (a) The two ends of the rope have equal tension T
in opposite directions. The normal reaction forces cancel out
the weights in the vertical direction. The forces are as shown
in the �gure above.
(b) The second law is written in the direction of motion for
each block (it is not necessary to write the expressions in the
vertical direction, because there is no friction):
m1 mass : F − T = m1a 5 − T = a
m2 mass : T = m2a T = 2a
From here, we �nd the acceleration and the tension:

a = 1.7 m/s2 and T = 3.3 N
(c) This problem can also be solved by considering the two
masses together. This is possible because the accelerations
are equal. Now, the tensions T and −T in the rope in the
two-mass system become internal forces, and, according to
third law, they cancel each other out. Thus, the acceleration
of the whole system is only due to the force F :

F = (m1 + m2)a → a = 5/3 = 1.7 m/s2

It is not possible to �nd the tension T in this system, because
T is an internal force.

Example 4.9

A block of mass m1 = 7 kg on a frictionless inclined plane with
a slope of 30◦ is tied to the end of a rope that passes through a
pulley. A mass m2 = 5 kg is hanging on the other end of the
rope.

(a) Draw a free-body diagram for each block and determine
the direction of motion.

(b) Separately, write the equations of motion for the masses
m1 and m2 . Calculate the acceleration and the tension
force in the rope.

Answer
(a) The forces acting on each block are shown above.

Consider �rst the system as a whole. On one hand, the
mass m2g will try to pull the mass m2 down and, on the
other hand, the component of mass m1 parallel to the in-
clined plane, m1g sin θ will try to pull it down.
Let us calculate which of these forces will become dominant:

m1g sin 30 = 7 × 10 × 0.5 = 35 N
m2g = 5 × 10 = 50 N

Since m2g > m1g sin θ , the motion will be downwards for m2
and upwards along the inclined plane for m1 .
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(b) Since there is no friction, it is su�cient to use the second
law only for the component along the motion:

for m1 : T − m1g sin θ = m1a T − 35 = 7a
for m2 : m2g − T = m2a 50 − T = 5a

Adding both sides of this equation, we �nd acceleration a as

follows:
50 − 35 = 12a → a = 1.25 m/s2

Plugging this value into either one of the equations, we get
T :

T = 44 N .

Example 4.10

The rope in the �gure has zero mass and the surfaces and the
pulley are frictionless. (a) Draw a free-body diagram for each
block. (b)What is the relation between the accelerations?
(c) Calculate the accelerations and the tension in the rope.

Answer
(a) In this problem, the accelerations of the blocks are di�erent.
The forces acting on each one are shown in the �gure.
(b) The acceleration of the mass m2 tied to the pulley will be
less, because, as it descends, some of the rope will be trans-
ferred to the other side. For example, how much does mass
m2 descend when mass m1 goes to the right by 1 m? The
answer is 1/2 m . Therefore, the relationship is as follows:

a2 = a1/2
(c) We use the second law for each mass along its direction
of motion:

for m1 : T = m1a1 → T = a1

for m2 : m2g − 2T = m2a2 → 20 − 2T = 2a2

There are three unknowns in these two equations: a1, a2,T .
The third equation that we need for the solution is the relation
a1 = 2a2 between the accelerations that we found in item (b).
Solving these three equations, the results are as follows:

a1 = 6.7 m/s2 , a2 = 3.3 m/s2 and T = 6.7 N .

Example 4.11

A block with mass m is thrown with a speed of 4 m/s along a
horizontal plane on which the coe�cient of friction is µ=0.25 .
What distance will the block travel before it stops?

Answer
In this problem, there is no force acting in the direction of
motion, rather the block moves due to its initial speed, and
then it slows down due to the friction force f acting in the

opposite direction. The forces acting on the object are shown
in the �gure.

Let us write the equations of motion:
Fx,net = ma → − f = ma
Fy,net = 0 → N − mg = 0

With the friction force f = µN and N = µmg , the accelera-
tion a is found to be negative:

a = −µg = −0.25 × 10 = −2.5 m/s2

Using the velocity formula without time from kinematics, the
distance traveled until the object stops (v = 0) is calculated
as follows:

v2 − v2
0 = 2ax → 0 − 42 = 2(−2.5)x

x = 3.2 m .

Example 4.12

A block of mass m = 1 kg is placed on an inclined plane with
a coe�cient of friction of µ = 0.3 and incline angle of 37◦ . A
horizontal force F = 20 N is applied on the block. (a) In what
direction will the block move? Using this information, show the

forces acting on the block. (b) Calculate the acceleration of the
block.

Answer

(a) The friction force will be in the opposite direction to that
of the motion, hence we must �rst determine in which direc-
tion the block will move. Two forces come into play along the
inclined plane: The component mg sin θ of its weight pulling
the block downwards, and the component F cos θ pushing
it upwards. Let us compare these two:
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mg sin 37◦ = 10 × 0.6 = 6 N
F cos 37◦ = 20 × 0.8 = 16 N
As F cos θ is greater, the block will try to go upward. It

may not be able to move, due to the friction force, but, in any
case it will not go downwards. The forces acting on the block
are thus as follows:

(b) If the x -axis is taken upwards along the inclined plane

and the y -axis is taken as perpendicular to the plane, the
equations of motion will be as follows:

Fx,net = ma → F cos 37◦ − mg sin 37◦ − f = ma
Fy,net = 0 → N − mg cos 37◦ − F sin 37◦ = 0

and we have the relation between friction and the normal
force: f = µN .
We calculate acceleration a from these three equations:

a =
(F cos 37◦−mg sin 37◦)−µ(mg cos 37◦+F sin 37◦)

m
a = 4 m/s2

If the resulting acceleration were not positive here, we would
conclude that the block was unable to move.

Example 4.13

A block with a mass of 2 kg can slide downwards when pressed
by a horizontal force F = 30 N against a wall. The coe�cient
of friction between the block and the wall is µ = 0.5 . Show the
forces acting on the block and �nd its acceleration.

Answer
This is a good example that shows that the normal force is

not always equal to mg . By de�nition, the normal reaction
force is one that counters all of the forces perpendicular to
the surface. In this problem, mg has no component perpen-
dicular to the surface; there is only the force F . Therefore,
we have

N − F = 0 → N = F
The block can only move downwards. The equations of mo-
tion in this direction are as follows:

mg − f = ma
Again, as the friction force is de�ned with the formula
f = µN , we get f = µF . We �nd the acceleration a from
these two equations:

a = (mg − µF)/m = (20 − 0.5 × 30)/2 = 2.5 m/s2 .

Example 4.14

The friction force between the blocks with masses m1 = 1 kg
and m2 = 2 kg shown in the �gure is µ = 0.3 . There is no
friction between the lower block m2 and the horizontal plane
underneath. A horizontal force F is applied on the block m1 .
(a) Show the forces acting on the blocks in separate diagrams.
(b) What is the maximum acceleration that the two blocks can
travel together without causing the upper block m1 to slip? (c)
What is the force F that provides this maximum acceleration?

Answer
(a) This example shows that friction may not always be in the
opposite direction to the motion, but may sometimes assist
motion. Friction is only between two blocks. As the mass m1
will try to move to the right compared to the lower mass, the
force (− f ) preventing it will be towards the left. However,
according to the third law, a force + f equal and opposite to

this will act on the lower block. This opposite force f is the
force that makes m2 move. Therefore, the forces acting on
the objects are as follows:

(b) Let us write the equations of motion for the lower block:
f = m2a

This friction force f has a maximum value:
fmax=µN1=µm1g . This is the maximum force that will act in
the direction of motion on the lower mass. From here, we
�nd acceleration a :
µm1g = m2a → a = (m1/m2)µg = 0.5×0.3×10 = 1.5 m/s2

Therefore, the maximum acceleration that both masses
can travel together will be a = 1.5 m/s2 .
(c) We also use this maximum acceleration for the upper block
m1 and �nd the maximum force F :

F − f = m1a → F = µm1g + m1a = 4.5 N .
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4.4 CIRCULAR MOTION

In Chapter 3, we had examined circular motion and established that an object
rotating with a constant speed v around a circle with radius r would get a
centripetal acceleration ar towards the center :

ar =
v2

r
(centripetal acceleration) (4.12)

According to the second law, there must be a force Fr acting in the same direction
Figure 4.14: There must be
a centripetal force causing the
centripetal acceleration.

as this acceleration, in other words, towards the center (Figure 4.14):

Fr = mar = m
v2

r
(centripetal force) (4.13)

This centripetal force Fr is the net force in the radial direction causing the
acceleration ar . It could be achieved in various ways. For example, if we are
swirling a stone tied to a rope, it will be the tension T in the rope. If a cart rotates
on rails, it will be the normal reaction force of the rails.

You may still wonder whether there is any need for such a force while the
object is rotating. Let us consider that the rope suddenly breaks while the object

Figure 4.15: What will happen
if the force causing centripetal
acceleration is removed?

is rotating (Figure 4.15). After that moment, according to the �rst law, the object
will travel along a linear path, since the tension T causing the rotation is no
longer present.

As a car is turning around a bend, the centripetal force is caused by the friction
force on the tires. Likewise, for an object rotating inside of a railed circle, it will
be the normal reaction force N of the rails: N = mv2/r .

Another example is the gravitational force that allows planets to rotate around
the Sun. For example, if we use the gravitational force for a satellite with mass m
rotating around the Earth on an orbit with radius r , we get

Fr = G
mME

r2 = m
v2

r

Using this equation, we can �nd the velocity of the satellite at any height.

Figure 4.16: Examples of cen-
tripetal force.

Let us correct a common misunderstanding here: In many books, a centrifugal
force is mentioned as the force acting outwards from the center. Students may
readily accept this instinctively. Indeed, you may think that, “When the bus enters
a curve, there is a force pushing me outwards from the center,” right?

Such a thinking is incorrect. The correct interpretation is as follows: You
are not pushed outwards when the bus enters a circular trajectory. If you do not
hold onto anything, you would continue to travel in a straight line. Actually, it
is the side of the bus turning inwards that is approaching you. Consider also the
following: When you hold on to a handlebar as the bus turns, in which direction
is the handlebar applying a force on you? Towards the center, of course.
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The concept of centrifugal force is a technique developed to solve certain
problems as statics. When writing all of the forces acting on a rotating object,
an outward force of magnitude mv2/r is added and then the sum of all forces is
set as equal to zero, as if the object is in equilibrium. But this has nothing to do
with reality. This is because, an observer rotating together with the object does not
constitute an inertial reference frame, and thus Newton’s laws do not apply there.
Therefore, we should refrain from using the term centrifugal force.

Example 4.15

A block with mass m = 200 g rotating with constant speed at
the end of a rope of length 80 cm on a frictionless horizontal
plane makes 500 revolutions in 3 minutes.

Calculate the centripetal acceleration of the block and the
tension in the rope.

Answer
The force towards the center causes the circular motion. As
seen in the �gure, the object’s weight and the reaction force

N of the surface have no components towards the center;
there is only the force T . Therefore,

Fr = mar → T = m
v2

r
.

We must �rst calculate the velocity v . As one rotation
around a circle with radius r will have a length of 2πr , we
divide the total distance by time:

v =
distance traveled

time duration =
500 × 2π × 0.80 m

3 × 60 s
= 14 m/s

From here, we calculate the centripetal acceleration and
the tension in the rope:

ar =
v2

r
=

142

0.8
= 245 m/s2 ,

T = mar = 0.2 × 245 = 49 N .

Example 4.16

(a) An automobile with mass 1200 kg is traveling on a horizon-
tal circular track of radius r = 200 m at a speed of 72 km/h .
What is the friction force between the wheels and the road?

(b) If the coe�cient of friction on this track is µ = 0.8 , what
will the maximum speed be at which the automobile can turn
without sliding?

Answer
(a) As seen in the �gure, the friction force f causes the cen-
tripetal acceleration:

f = m
v2

r
= 1200 ×

(72 × 1000/3600 m/s)2

200
= 2400 N

(b) The maximum value of the friction force is fmax=µN=µmg ,
hence it is the maximum force directed towards the center.
We can write the centripetal acceleration caused by this force
as follows:

µmg = m
v2

r
→ v2 = µgr .

This maximum velocity is calculated as follows:
v=
√
µgr=

√
0.8 × 10 × 200 = 40 m/s = 144 km/hour .

Example 4.17

A car rounds a frictionless curve banked at an angle of 30◦

and with a radius of r = 100 m . Calculate the necessary speed
v so that the car will not slip up or down the incline.

Answer
This time, there is no friction. So, which is the centripetal
force that keeps it on a circular path? As seen in the �gure,
the normal reaction force N of the road will have a compo-
nent towards the center. This is the centripetal force that
causes rotation.

We write the equations of motion along the x - and y -
directions shown in the �gure:

x -direction: N sin θ = mv2/r
y -direction: N cos θ = mg

Dividing the two equations on both sides, we get
tan θ = v2/gr
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From this, we calculate the necessary speed:
v =

√
gr tan 30◦ =

√
10 × 100 × 0.58

v = 24 m/s = 87 km/hour .

Example 4.18

The pilot of an airplane executes a loop-the-loop stunt at a
constant speed of 300 m/s in a vertical circle of radius 2 km .
(a) Calculate the centripetal acceleration of the airplane.
(b) Calculate the normal reaction force applied by the seat to

the pilot with mass m at the top and bottom of the circle
in terms of multiples of the weight mg of the pilot.

Answer

In this problem, the centripetal force is the combination of
the weight mg of the pilot and the normal force N of the
seat. (The centripetal force rotating the airplane is the force
generated by the wings, but we only consider the pilot here.)
(a) First, let us calculate the centripetal acceleration in terms
of multiples of g :

ar = v2/r = 3002/2000 = 45 m/s2 = 4.5g
(b) As seen in the �gure, the reaction force N of the seat
is always towards the center at the top and bottom of the
circle. However, the weight mg is towards the center at the
top, but outwards from the center at the bottom. Therefore,
the resultant force towards the center will be written in both
cases:
At the top:

N + mg = mar → N = mar − mg = 4.5mg − mg
N = 3.5mg

At the bottom:
N − mg = mar → N = mar + mg = 4.5mg + mg
N = 5.5mg

Clearly, the most di�cult part of the pilot’s maneuver is
at the bottom of the circle.

Example 4.19

A stone tied to the end of a string with radius r is being rotated
around in a vertical circle. What should the speed of the stone
be at the top so that it will complete the circle without the string
getting loose there?

Answer
Both the weight mg of the stone and the tension T of the
string will be towards the center at the top of the circular

motion of the stone.
Therefore, the centripetal force should consist of the sum of
these two:

mg + T = m
v2

r
What will happen if we reduce the stone’s speed v? The right
side of this expression will decrease. Since weight is constant
on the left side, tension T will also decrease. When a certain
speed is reached, we get T = 0 , in other words, the string
will get loose.
Therefore, the minimum velocity v will be the velocity at
T = 0 :

mg + 0 = m
v2

r
→ v =

√
gr

Multiple-choice Questions

1. A bicycle and truck collide head-on. Which of the fol-
lowing is correct?

(a) The force on the bicycle is larger.
(b) The force on the truck is larger.
(c) The forces are equal and opposite.
(d) The forces are equal and perpendicular.

2. Which is the force that makes a falling ball bounce back
up from the ground?

(a) Gravitational force
(b) Weight
(c) Friction force
(d) Normal reaction force
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3. Which of the following is incorrect?
(a) The net force on a car at rest is zero.
(b) The net force on a car traveling at constant speed is
zero.
(c) The acceleration of a car that gets faster is zero.
(d) The acceleration of a car traveling in a straight line
at constant velocity is zero.

4. A car applies brakes and stops. Which force makes the
car stop?

(a) Weight
(b) Friction force
(c) Normal force on the surface
(d) Gravitational force

5. Which is correct at the maximum height of a stone in
projectile motion?

(a) The net force on the stone is zero.
(b) There is a horizontal force acting on the stone.
(c) There is a gravitational acceleration on the stone.
(d) The acceleration of the stone is zero.

6. On a tabletop with a friction force of 6 N , what will
the acceleration be of an object with mass 2 kg pulled
horizontally with a force of 8 N in units of m/s2 ?

(a) 1 (b) 2 (c) 3 (d) 4

7. Passengers on a train with no windows and traveling at
constant speed observe that a ball on the �oor starts to
roll forward. Which of the following could be true?

I. The train could be slowing down.
II. The train could be getting faster.
III. The train could be going uphill.
IV. The train could be going downhill.

(a) I & III (b) I & IV (c) II & III (d) II & IV

8. Two people are playing tug of war. Which of the follow-
ing is correct?

(a) The one who pulls stronger wins.
(b) The one with the higher mass wins.
(c) The one with higher friction force on the ground
wins.
(d) The one who grabs the rope more tightly wins.

9. For which observers do Newton’s laws not apply?
(a) Observers at rest.
(b) Observers in uniform linear motion.
(c) Accelerating observers.
(d) All of the above.

10. An elevator goes into a free fall when its cable breaks.
How would a screw that comes o� in the ceiling of the
elevator move with respect to an observer in the elevator?

(a) It will accelerate with g.
(b) It will fall with a constant velocity.
(c) It will remain suspended in the air.
(d) It will accelerate upward.

11. Which of the following are incorrect?
I. The mass of an object in outer space is zero.
II. The weight of an object in outer space is zero.
III. The mass of an object is less on the Moon.
IV. The weight of an object is less on the Moon.

(a) I & II (b) III & IV (c) I & III (d) II & IV

12. What is the force F applied on an object with mass
1 kg moving vertically upwards with an acceleration of
4 m/s2 ?

(a) 6 N (b) 10 N (c) 14 N (d) 18 N

13. A man in an elevator releases the suitcase in his hand
and the suitcase does not drop to the ground. Which of
the following could be correct?

I. The elevator is in free fall.
II. The elevator is descending with constant speed.
III. The elevator is moving downwards with accelera-

tion g .
IV. The elevator is moving upwards with acceler-

ation g .
(a) I & II (b) I & III (c) II & III (d) I & IV

14. Which of the following is incorrect for friction force?
(a) It is always opposite to the direction of motion.
(b) It is always proportional to mg.
(c) It is always proportional to the normal reaction force
N.
(d) It is always perpendicular to the surface.

15. How would a ball tied to the end of a string and rotating
on a frictionless plane move when the string breaks?

(a) It will stop.
(b) It will continue rotating.
(c) It will move along a straight line.
(d) It will move towards the center.

16. An object with mass 10 kg is rotating with a speed of
3 m/s on a circular path with radius 2 m . What is the
centripetal force acting on the object in newton units?

(a) 30 (b) 35 (c) 40 (d) 45

17. What could cause an automobile to round a curve?
I. Friction force.
II. The mass of the automobile.
III. The speed of the automobile.
IV. The normal force of the road.

(a) I & II (b) II & III (c) III & IV (d) I & IV
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18. If a car is able to turn around a curved road with radius
r at a speed v without sliding, at what speed can it turn
without sliding around a curve with radius 2r ?

(a) v (b)
√

2v (c) 2v (d) 4v

19. What is the ratio of the centripetal forces FB/FA of an
automobile A with mass m turning around a curve with
radius r at speed v and an automobile B with mass 2m
turning around a curve with radius 2r at speed 2v?

(a) 1 (b) 2 (c)
√

2 (d) 4

20. When the speed of a rotating stone at the end of a string
with length r reaches 10 m/s , the string breaks. If a
string with length 4r made of the same material is used,
at what speed will the rope break (in units of m/s )?
(a) 10 (b) 20 (c) 10

√
2 (d) 10/

√
2

Problems

4.3 Applications of Newton’s Laws

4.1 A bathroom scale measures the normal reaction force
N that it applies on the person standing on it. A boy with
a mass of 50 kg is standing on the scale in an elevator. (a)
How many newtons (N) will the scale show when the eleva-
tor is accelerating upwards at 2 m/s2 ? (b) What will it show
when the elevator is accelerating downwards with the same
acceleration? [A: (a) 600 N , (b) 400 N .]

Problem 4.2
4.2 In the �gure, the forces F1=18 N and F2=20 N are ap-
plied on a block with a mass of m=1 kg on a horizontal plane.
The coe�cient of friction of the plane is µ = 0.2 . Calculate
the acceleration of the block. [A: 2.5 m/s2 .]

Problem 4.3
4.3 A 2 kg block is pressed against a vertical wall with a
force F=30 N at an angle of 53◦ with the horizontal. The co-
e�cient of friction between the block and the wall is µ=0.2 .
In which direction will the block move and what will be its
acceleration? [A: Upwards a = 0.2 m/s2 .]

Problem 4.4
4.4 The blocks in the �gure with masses m1=1 kg and
m2=2 kg have been tied to each other with a rope with negligi-
ble mass passing through a frictionless pulley. The coe�cient
of friction between the horizontal plane and the block m2

is µ=0.3 . Calculate the accelerations of the blocks and the
tension in the rope. [A: a = 1.3 m/s2 , T = 8.7 N .]

Problem 4.5

4.5 The blocks with masses m1=1 kg and m2=2 kg in the
�gure are tied to each other with a rope passing through a
frictionless pulley. The coe�cient of friction between the
blocks and on the ground is µ=0.35 . The lower block is be-
ing pulled with a force F=25 N parallel to the plane. Draw
free-body diagrams for each block and �nd the acceleration
of the blocks and the tension in the rope.

[A: a = 2.5 m/s2 , T = 6 N .]

Problem 4.6

4.6 The blocks with masses m1=1 kg and m2=2 kg in the
�gure are placed on two planes inclined at angles 53◦ and
37◦ respectively, and tied to each other with a massless rope
passing through a frictionless pulley. The coe�cient of fric-
tion of the surfaces is µ=0.1 . (a) Determine the direction of
motion. (b) Calculate the acceleration of the blocks and the
tension in the rope.

[A: (a) m2 goes downward, (b) a = 0.6 m/s2 , T = 9.2 N .]

Problem 4.7

4.7 The masses of three blocks tied to each other on a friction-
less horizontal plane are m1=1, m2=2, m3=3 kg . The mass
m1 is being pulled with the horizontal force F=12 N . Draw
free-body diagrams for each block and calculate the accelera-
tion of the blocks and the tensions in the ropes.

[A: a = 2 m/s2 , T1 = 10, T2 = 6 N .]
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Problem 4.8

4.8 The three masses in the �gure are equal and
m1=m2=m3= 1 kg . All the surfaces and pulleys can be as-
sumed to be frictionless and the ropes to be massless. Draw
free-body diagrams for each block and calculate the accelera-
tion of the blocks and the tensions in the ropes.

[A: a = 1.7 m/s2 , T1 = 8.3 N and T2 = 1.7 N .]

Problem 4.9

4.9 The block with mass m1=1 kg in the �gure is tied to
the wall with a horizontal rope and placed on another block
with mass m2=3 kg . The coe�cient of friction of all of the
surfaces is µ=0.4 . The block m2 is being pulled away from
the wall with the horizontal force F=30 N . Draw free-body
diagrams for each block and calculate the acceleration of m2
and the tension in the rope. [A: a = 3.3 m/s2 , T = 4 N .]

Problem 4.10

4.10 The blocks with masses m1=1 kg and m2=4 kg have
been tied to each other with a pulley and ropes on a horizon-
tal plane, as seen in the �gure. The mass m2 is being pulled
away with the horizontal force F=20 N . Draw free-body
diagrams for each block and calculate the accelerations of the
blocks and the tension in the rope tied to m1 .

[A: a1 = 5, a2 = 2.5 m/s2 , T1 = 5 N .]

Problem 4.11

4.11 Masses m1=1 kg and m2=2 kg are tied to each other
with a rope on an inclined plane with slope angle 53◦ . The
coe�cients of friction of the masses are di�erent because
they are made of di�erent materials. The coe�cient of fric-
tion between m1 and the inclined plane is µ1=0.1 and, it is
µ2=0.2 for m2 . Calculate the acceleration of the blocks and
the tension in the rope. [A: a = 7 m/s2 , T = 0.4 N .]

Problem 4.12
4.12 A block with mass m is thrown with an initial speed
of v0=8 m/s upwards along an inclined plane with a slope
angle of 37◦ from the bottom of the plane. The coe�cient of
friction is µ=0.3 . Find the acceleration of the block and the
distance it travels along the inclined plane until it stops.

[A: a = 8.4 m/s2 , 3.8 m .]

4.4 Circular Motion
4.13 A car is driven with constant speed v on a horizontal
circular track with a radius of r=200 m . The coe�cient of
friction between the tires and the road is µ=0.8 . What is
the maximum speed with which the car can turn without
slipping? [A: v = 40 m/s .]

4.14 Car A with mass m goes around a circular path with ra-
dius r at speed v . Car B with mass 5m goes around another
circular path with radius 3r at speed 2v . What will be the
ratio of the centripetal force FB on car B to the centripetal
force FA on car A? [A: FB/FA = 6.7 .]

Problem 4.15
4.15 A motorcycle showman with mass m drives through a
vertical circular track with radius r=40 m . What should his
minimum speed v be at the top point so that the motorcycle
will not loose contact with the track? [A: 20 m/s .]

Problem 4.16
4.16 The mass m = 2 kg tied to the end of a pendulum with
length 3 m has a speed of 10 m/s at the position where the
rope makes an angle of 60◦ with the vertical. Calculate the
tension in the string. [A: T = 77 N .]

Problem 4.17
4.17 Conical pendulum. A ball with mass m = 1 kg is
tied to a string of length 8 m hung from the ceiling. The ball
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is rotating on a circular trajectory on the horizontal plane
where the rope makes an angle of 53◦ with the vertical.
(a) What is the tension in the rope? (b) What is the speed of
the ball? [A: (a) T = 16.7 N , (b) v = 9.2 m/s .]

Problem 4.18
4.18 Two strings with equal lengths L=5 m are tied to a mass
of m=4 kg and their other ends are �xed to a vertical axis at
a distance of 8 m from each other. The mass m is rotating
with a speed of v=6 m/s on a horizontal plane around the
axis with the strings staying tight. Find the tensions in the
strings. [A: T1 = 65 N and T2 = 15 N .]

4.19 In an amusement park, a chairoplane is able to rotate
people at the end of a chain with length 5 m that can freely
swing at the end of a horizontal bar of length 3 m (See the
�gure below). A boy with a mass of m = 50 kg is rotating on

this chairoplane at an angle of 37◦ with the vertical. Calcu-
late the speed v of the boy and the tension in the chain.

[A: v = 6.7 m/s , T = 625 N .]

Problem 4.19

4.20 One end of a string is tied to a puck of mass m=2 kg on
a frictionless table and the other end passes through a hole
at the center of the table, with another mass M = 3 kg tied
to that end (See the �gure below). The suspended mass M is
able to stay at rest when the mass m on the table is rotating
on a circular trajectory with a radius of 60 cm . What is the
speed of the mass m? [A: 3 m/s .]

Problem 4.20
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In an amusement park the speed
of a roller coaster increases or
decreases as it goes up and
down.
What is it that is stored when
its speed decreases and regained
when its height decreases?

As a principle, all mechanical problems can be solved by using Newton’s
three laws alone. However, this method may often be complicated or di�cult to
interpret. On the other hand, using concepts such as work, energy and momentum,
which are closer to our daily intuitions, we can both work in an easier manner
and also make interpretations that are more easily adoptable for technology.

From this chapter onwards, we shall not set forth new laws but merely de�ne
new quantities and seek solutions in terms thereof. The most important feature
of these new quantities is that they can be expressed within general conservation
laws.
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5.1 WORK

The concept of ‘work’ borrowed from daily life is the ability of a force to
displace an object. It takes on a precise meaning in physics.
Work Done by a Constant Force

In order to understand the concept of work in an easier manner, let us �rst
de�ne the work done by a constant force.

De�nition: The work done by a constant force F exerted on an object
during displacement d is the scalar quantity

W = Fd cos θ (Work) (5.1)

In this equation, θ is the angle between the force and the displacement. As seen
in the �gure, F cos θ is the projection of the force along the path d . Thus, the
work is the projection of the force along the path times the displacement.

Figure 5.1: Work by a force. The unit of work is newton×meters. This derived unit was named as the
‘Joule’ after English scientist James P. Joule, and is abbreviated as J.

Let us emphasize the most important features of the work:
• The work is zero if the object is not displaced (d = 0 ) despite a force being

applied on it.
This may seem contrary to our daily intuitions. For example, a weightlifter
standing motionless holding 200-kg dumbbells, does zero work according
to our de�nition. Yet, it would be obvious that the sweating sportsman is
getting exhausted, just like someone who performs work. This should not be
seen as a contradiction, because the concepts of physics are de�ned within a
precise context.

• The work is zero if the force is perpendicular to the displacement (cos 90◦ = 0 ).
• If the force forms a wide-angle with the direction of motion, in other words,

if the projection of the force along the path is in the opposite direction to the
displacement, then the work done is negative.

Expression of Work As a Scalar Product
Our de�nition of work actually �ts the form of the scalar product of two

vectors that we de�ned in Chapter 1. Instead of the vectors ~A and ~B used there,
if we take ~F as the force vector and ~d as the displacement vector, then we can
write the expression (5.1) as follows:

W = Fd cos θ = ~F · ~d (5.2)
Example 5.1

Calculate the works done by each of the forces on the object in
the �gure for a displacement d=2m in the +x direction.

Answer
We apply the de�nition of work (Eq.5.1) to each force:

W1 = F1d cos 30◦ = 15 × 2 × 0.87 = 26 J
W2 = F2d cos 90◦ = 8 × 2 × 0 = 0
W3 = F3d cos 180◦ = 3 × 2 × (−1) = −6 J
W4 = F4d cos(180◦ − 37◦) = 6 × 2 × (−0.8) = −9.6 J
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Work Done by a Variable Force
As the concept of work will be used extensively, we should also be able to

calculate the work done by a force whose magnitude varies along the path. The
concept of the integral used in calculus will be useful here. Now, we will show
how to build the integral for the work done by a variable force that is parallel to
the displacement.

Let the object be moving along the x axis from position x = a to position
x = b . Thus, the displacement is d = b − a . Let us assume that the variable force
exerted on the object in this interval varies as a function of position: F = F(x) .
Such a F(x) function is shown in the �gure below.

Figure 5.2: The total work done
in the interval [a, b] is the sum
of the small works ∆Wi done
in the small intervals ∆x . If
the distance ∆x decreases grad-
ually (∆x → 0 ), the di�erence
between the rectangles and the
curve vanishes.

Let us divide the path [a, b] into N intervals, each with widths as small as
∆x . Assuming that the force F remains approximately constant in each of these
intervals, such as between xi and xi + ∆x , then the small work performed in this
ith interval is

∆Wi ≈ F(xi) ∆x i = 1, 2, 3, . . .N

As seen in the �gure, ∆Wi is just the area of the thin rectangle drawn in the ith

interval. Here, we commit a small error by assuming that the force has a constant
value of F(xi) in this interval. However, this error will vanish when the ∆x→ 0
limit is taken later.

We may thus write the total work as the sum of the works in these small
intervals:

W =

N∑
i=1

Wi ≈

N∑
i=1

F(xi) ∆x

If we now use the concept of limit in calculus, in other words, if we gradually
approach the value of ∆x to zero without setting it equal to zero, this sum
expression becomes the de�nition of the de�nite integral of the function F(x)
in the interval [a, b] :

lim
∆x→0

N∑
i=1

F(xi) ∆x =

∫ b

a
F(x) dx

As a result, the integral expression of the work done by a variable force F(x) in
the interval [a, b] becomes as follows:

W =

∫ b

a
F(x) dx (Work done by a variable force) (5.3)
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Brief Information on Integrals
The concept of the integral and integrating techniques are examined compre-

hensively in calculus courses. Here, let us brie�y review the integrals of the most
frequently encountered functions without proof.

The integral expression that we found for work above has the following
meaning: Let us �nd such a function Φ(x) such that its derivative is the integrated
function F(x) :

Φ(x) =

∫
F(x) dx or dΦ

dx
= F(x)

The expression here without the limits is called the inde�nite integral. If this
function Φ is known, the integral can be calculated as follows:∫ b

a
F(x) dx = Φ(x)

∣∣∣∣∣x=b

x=a
= Φ(b) − Φ(a)

The result is the value of Φ at the higher limit less its value at the lower limit.

Inde�nite integrals of certain functions (c a constant).

function (y)
∫
y(x) dx function (y)

∫
y(x) dx

1 x + c cos x sin x + c

x 1
2 x2 + c sin x − cos x + c

x2 1
3 x3 + c ex ex + c

√
x = x1/2 2

3 x3/2 + c 1
x ln x + c

xn xn+1

n + 1 + c ln x x ln x − x + c

You do not need to remember this table if you know derivatives. The integral that
you are looking for should accept the given function F(x) as its derivative.

Example 5.2

Using integrals, calculate the work done by a force varying
as F(x) = x3 along the x axis from the position a = 1 to
position b = 5 .

Answer We use the integral de�nition of work (Eq. 5.3):

W =

∫ b

a
F(x) dx =

∫ 5

1
x3 dx =

x4

4

∣∣∣∣∣∣5
1

=
54

4
−

14

4
W = 156 J

Work Done by a Spring Force
We all are familiar with the spiral springs widely used in technology. Steel

springs are used in ball-point pens and clothespins, inside mattresses, the shock
absorbers of cars, etc. When we try to stretch out or compress a spring, it resists
with an opposing force.

Let us �x one end of a spring with a normal length L0 to a wall and then let
us stretch out or compress the other end along the x axis (Figure 5.3). Let the
new length of the spring be L . Let us show the amount of extension of the spring
as

x = L − L0 (5.4)
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The value x is positive for extension and negative for compression.
The expression of the spring force is known as Hooke’s law, in memory of

the English scientist Robert Hooke:
The force exerted by a spring is proportional to the extension and is in the opposite

direction to the extension.

F = −kx (Hooke’s law) (5.5)

The coe�cient k in this formula is referred to as the spring constant or the
force constant. Its unit is newton/meters and depends on the type of material
used in the spring.

Figure 5.3: Spring force x is in
opposite direction to its exten-
sion.

Let us emphasize the important aspects of the Hooke’s law:
• The spring force is proportional not to the length of the spring, but to

x=L−L0 , the amount of extension or compression.
• The negative sign in the formula indicates that the force is in the opposite

direction to the extension. If the spring is extended ( x>0 ), then the force
is in the opposite direction, in other words, F < 0 . In the reverse case, if
the spring is compressed ( x < 0 ), then the force is in the positive direction:
F > 0 .

• The �exibility of the spring has a certain limit. When extended for more than
a certain x value, the spring gets deformed and loses its �exibility.

We wish to calculate the work done by the spring force when we extend a
spring from its normal length ( x = 0 ) until it reaches the value x = d . The
spring would, of course, not extend by itself; we will have to apply a force of at
least (−F ). But we are only interested in the work performed by the spring force.
Therefore, if we take the boundaries of the integral as a = 0 and b = d , we may
write the work performed by the spring force as follows:

Ws =

∫ d

0
F dx =

∫ d

0
(−kx) dx = −k

∫ d

0
x dx = −k

[
1
2 x2

]d

0

Ws = − 1
2 kd2

As expected, the work performed by the spring force is negative, because it is
in the opposite direction to the extension. We need to perform a positive work
against this in order to extend the spring.

We will use this result later in the topic of potential energy.

Example 5.3

A spring is observed to extend by 10 cm when a force of 30 N
is applied. How much work should be performed to extend this
spring by 40 cm?

Answer
We �rst calculate the spring constant k using the given data.

Hooke’s law gives us (the negative sign is not important):
F = kx → 30 = k × 0.10
k = 300 N/m

Using this value of constant k , we can calculate the work done
against the spring force to extend the spring by x=0.40 m :

W = −Ws = 1
2 kx2 = 1

2 × 300 × 0.42 = 24 J

5.2 POWER

Anyone can carry a load for a distance of 100 meters, but some of us can do it
faster. In daily life, and also in technology, it is important to know the amount of
work performed per unit time. We describe this with the concept of power.
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De�nition: If the amount of work performed in a time interval ∆t is ∆W ,
then the average power is de�ned as,

Pave =
∆W
∆t

(average power) (5.6)

The instantaneous power at a given instant t is de�ned as,

P = lim
∆t→0

∆W
∆t

=
dW
dt

(instantaneous power) (5.7)

which is just the derivative of work with respect to time t .
Units of Power

In the SI system, the unit of power is joule/seconds = watt and is abbreviated
as (W). The use of kilowatt (1kW = 1000W ) is more common in the industry.

The watt is one of the rare units used both in science and in technology.
If we rewrite the de�nition above as dW = P dt , we see that the unit of work
(joule) can also be expressed as watt×hours or kilowatt-hours (kWh). When we
talk about our electricity consumption as being in “kilowatts,” we actually mean
kilowatt-hours, as it refers to the energy that we consume.

Figure 5.4: Horsepower was
used in the past as a measure
of the amount of coal extracted
from a coal mine.

Horsepower is another unit of power used in the automotive industry and
is abbreviated as (HP):

1 HP=746 watts =0.746 kW
The horsepower unit’s �rst historical use was in extracting coal from the mines
of Britain. Back in those days, when Scottish scientist James Watt (1736–1819)
invented the steam engine, he proposed this unit in order to compare the power
of the steam engine with the power of horses.

There is another useful formula for expressing power in terms of force and
velocity in mechanics. In the de�nition above, let us write the work ∆W as the
work performed by a force ~F over a small displacement of ∆~r . Then,

P = lim
∆t→0

~F · ∆~r
∆t

= ~F ·
(

lim
∆t→0

∆~r
∆t

)
The limit in the brackets is just the velocity ~v . Then, we can write the power
generated by the force ~F at time t as follows:

P = ~F · ~v (Power) (5.8)

Example 5.4

A crane is lifting a mass of 2 tons of coal from under the ground
to the surface at a speed of 12 km/hour . Calculate the power
of the crane engine in units of watts and horsepower.

Answer Since the crane is pulling the mass m at constant

speed, it is exerting a force F = mg equal and opposite to
the weight mg . We use Eq. (5.8) that we found for power:

P = F v = mgv = 2000 × 10 × (12000/3600)
= 67000 watt = 67 kW

and use the conversion formula 1 HP = 0.746 kW :
P = 67/0.746 = 90 HP

Example 5.5

An air-conditioner is operating at a power of 3 kW . How much
energy does it consume in one month? What is the cost for one
month if the price is 20 cents per kilowatt-hours?

Answer The consumed energy can be calculated as ∆W =

P ∆t :
∆W = 3 × (30 days × 24 hours) = 2160 kWh.

The monthly cost is found by multiplying this by the energy
unit price:

2160 × 0.2 = 432 $ .
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5.3 KINETIC ENERGY

What really happens when a force performs some work? For example, when
we apply a force to an object, it may gain speed or, be lifted to some height or,
generate electricity, etc. These are di�erent aspects of the energy concept. As the
most important concept de�ned in physics, energy may roughly be regarded as
“the ability to do work.” Working with the concept of energy both provides conve-
nience and may also be used outside of mechanics, in �elds such as electricity,
chemistry and biology.

Figure 5.5: Where does the
work performed by these racers
in pushing the sled go?

There are various types of energy in physics, such as kinetic energy, potential
energy, electrostatic energy, magnetic energy, chemical energy, etc. Only kinetic
and potential energy are used in mechanics.

De�nition: The kinetic energy of an object with mass m traveling at speed
v is,

K = 1
2 mv2 (kinetic energy) (5.9)

Kinetic energy is always positive. An object at rest has zero kinetic energy. Notice
that kinetic energy is also expressed in terms of the work unit:

kg × (m/s)2 =
kg ×m

s2 ×m = newton ×m = joule

Work-Energy Theorem
To show the relation between work and kinetic energy, let us calculate the

work performed by the net force exerted on an object with mass m . However,
rather than the most general cases of three-dimensional and variable force, we
will consider the work performed by a one-dimensional constant force.

An object with mass m has a speed of v0 at the location x0 , and, under the
in�uence of a constant force Fnet , reaches the speed v when it arrives at the
position x (Figure 5.6). Let us write the net work performed by the constant force:

Figure 5.6: Work-energy theo-
rem.

Wnet = Fnet d = Fnet (x − x0)

We write the force as the second law Fnet = ma and use the formula 2.7 relating
the position to speed [v2 − v2

0 = 2a(x − x0) ], �nding that,

Wnet = ma (x − x0) = m a(x − x0)︸    ︷︷    ︸
(v2 − v2

0)/2

Wnet = 1
2 mv2 − 1

2 mv2
0 = K − K0 (5.10)

This result is known as the Work-Energy Theorem:
The net work done on an object is equal to the change in the kinetic

energy of the object.
This is a very general result and is always true, even in the cases of three-

dimensional motion or with variable forces:

Wnet =

∫ 2

1

~Fnet·d~r = 1
2 mv2

2 −
1
2 mv2

1 (Work-energy theorem) (5.11)

Here, d~r refers to a small displacement vector with components (dx, dy, dz) .
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The work-energy theorem is actually another way of expressing Newton’s
second law, in terms of work and kinetic energy. The theorem shows clearly
that, if the work done by the net force is positive, then the object’s kinetic
energy increases. If the net work is negative, then the kinetic energy decreases.
Another advantage of this theorem is the convenience of working with only scalar
quantities, instead of the vector law ~F = m~a . Some types of problems can be
solved very quickly using this theorem.

Example 5.6

When a net force F is applied on an object with mass 3 kg
traveling at a speed of 5 m/s , its speed is increased to 10 m/s
at the end of a distance of 9 m .
Calculate the magnitude of the force.

Answer We could have solved this problem the long way,

by �rst calculating acceleration. But it is easier to use the
work-energy theorem: the work performed by the unknown
force F produces the change in kinetic energy:

Fd = 1
2 mv2 − 1

2 mv2
0

F =
m(v2 − v2

0)
2d

=
3 × (102 − 52)

2 × 9
= 12.5 N .

Example 5.7

An object with mass m is thrown along a horizontal surface at
a speed of 6 m/s . The coe�cient of friction is µ = 0.4 How far
will it travel before coming to rest?

Answer
Among the forces exerted on the object, the weight and the
normal force are in the vertical direction and balance each

other. Hence, only the friction force remains, and it is oppo-
site to the motion. The work it performs is negative, and it
makes the �nal kinetic energy zero ( v = 0 ):

Wnet = 1
2 mv2 − 1

2 mv2
0

− f d = −(µmg)d = 1
2 mv2 − 1

2 mv2
0

d = v2
0/(2µg) = 62/(2 × 0.4 × 10) = 4.5 m .

5.4 POTENTIAL ENERGY

Conservative and Nonconservative Forces
Forces in mechanics are divided into two groups in terms of one speci�c

feature. The distinction of conservative and nonconservative forces is crucial in
de�ning potential energy.

To understand this, let us �rst consider throwing a stone upwards from the
ground with a speed of v (Figure 5.7). Neglecting air friction, the stone is under
the in�uence of gravity alone when in the air. The kinetic energy of the stone
on the ground is K1 = 1

2 mv2 . When the stone rises to reach its maximum height,
its speed is zero for a short instant: K2 = 0 . Now, can we say that the kinetic
energy of the object has disappeared? No, because, immediately afterwards, the

Figure 5.7: Kinetic energy may
be reduced with the e�ect of
gravity but it does not disappear.
It can be regained.

stone resumes its downward motion and recuperates its former kinetic energy
when it reaches the ground. In this example, we say that the gravitation force is
conservative, because it stores the kinetic energy somehow and later returns it.

On the other hand, consider a mass m thrown with a speed of v along a
horizontal surface with friction. The net force exerted on this object along the
path is the frictional force. The kinetic energy of the object at the start is again
K = 1

2 mv2 . The object gradually slows down and its kinetic energy vanishes when
it comes to a stop. Now, we can wait for ages, but we will never see this object
re-accelerate. In this example, we say that the frictional force is nonconservative,
because it irreversibly takes the kinetic energy of the object and never returns it.
(Actually, it is converted into another type of energy: heat.)
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Potential energy is that type of energy that can store and return the work.
According to the above example, potential energy can be de�ned only for conser-
vative forces.

The following criterion determines whether or not a force is conservative:
A force is conservative if the work done is independent of the path taken between

any two points. Figure 5.8: The work per-
formed by a conservative force
is independent of the traveled
path.

Let us test this criterion in the example of gravitational force. We want to
calculate the work performed by gravity on di�erent paths taken by the mass m in
Figure 5.9 from A to B . Since the work is zero when the force is is perpendicular
to the path, there follows:

path ACB: WACB = WAC + WCB = −mg × AC + 0 = −mgh

path ADB: WADB = WAD + WDB = 0 − mg × DB = −mgh

diagonal AB: WAB = (−mg sin θ) × AB = −mg × (AB sin θ) = −mgh

The work along all three paths is the same. This shows that gravity is a conserva-
Figure 5.9: Work done by grav-
ity along three di�erent paths.

tive force. If we had made the same calculation for friction force, we would have
found that the work varied according to the traveled path .
General Definition of Potential Energy

The work done against a conservative force is equal to the change in
potential energy.

If the conservative force is ~Fc then the force doing work against it will be
(−~Fc) . If we denote potential energy as U , then we may write this de�nition as
follows:

−

∫ 2

1

~Fc · d~r = U2 − U1 (potential energy de�nition) (5.12)

It seems reasonable here to de�ne the increase in potential energy as negative
work. Since the negative work decreases kinetic energy, the potential energy
should be increasing.

Now let us de�ne gravitational and elastic potential energies in accordance
with this general de�nition.
Gravitational Potential Energy

Consider an object near the Earth’s surface, with mass m traveling from point
A at position (x1, y1) to a point B with position (x2, y2) along some curvilinear
path (Figure 5.10). Let us denote the weight of the object with the vector m~g
and a small displacement along the path with d~r . The angle between d~r and the
y -axis is θ . We now write the work done against the conservative force, in other
words, the work done by the vector (−m~g) , as a scalar product:

−W =

∫ B

A
(−m~g) · d~r =

∫ B

A
(−mg) dr cos(180◦ − θ)

As can be observed in the �gure, dr cos(180◦ − θ) = −dr cos θ = −dy . Accord-
Figure 5.10: Coordinates in a
gravitational potential energy.

ingly,

−W =

∫ B

A
mg dy = mg

∫ y2

y1

dy = mg(y2 − y1)
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The result shows that the work done against the gravitational force is independent
of the path taken and depends only on the heights (y -coordinates) of the two
points. Now, we can de�ne the gravitational potential energy using the general
de�nition of Eq. (5.12):

U2 − U1 = (Work done against gravity) = −W = mg(y2 − y1)

Comparing both sides of this equation, the potential energy at any place with
coordinate y can be written as,

U(y) = mgy + C

The constant C in this equation is determined after some zero-reference point of
the potential energy is chosen. For example, if we want U = 0 at the level y = 0 ,
then C = 0 . The potential energy takes negative values below this level. As a
result, we may write gravitational potential energy as follows:

U(y) = mgy (gravitational potential energy) (5.13)

The choice of the zero level of the gravitational potential energy is arbitrary and
can be taken at any height. This has no importance, because, as we shall see
later, only the potential energy di�erence between two heights will appear in
equations. This di�erence does not change, regardless of where the zero level is
chosen.
Elastic Potential Energy

Next, we �nd the elastic potential energy due to spring force. As seen in
Figure 5.11, the spring force corresponding to an extension of x along the x -axis
is F = −kx and in the opposite direction. And the force (−~F) performing work
against this force becomes +kx , hence it is in the same direction as x . Thus, the
work done during the extension from the value x1 to the �nal value x2 is:

−W =

∫ x2

x1

(−F) dx =

∫ x2

x1

(+kx) dx = k
∫ x2

x1

x dx = k 1
2 x2

∣∣∣∣∣x2

x1

= 1
2 kx2

2 −
1
2 kx2

1

Using the general de�nition of potential energy (Eq. 5.12), we �nd that
Figure 5.11: Coordinates in
elastic potential energy. U2 − U1 = 1

2 kx2
2 −

1
2 kx2

1

U(x) = 1
2 kx2 + C

The constant C is again determined by arbitrarily choosing the place where the
potential energy is zero. If we take it to be zero at the normal length of the spring,
in other words, at x = 0 , then C = 0 . As a result, we can write the elastic
potential energy as follows:

U(x) = 1
2 kx2 (elastic potential energy) (5.14)
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Gravitational Potential Energy (General Case)
If the height continuously increases on the surface of the Earth, then the

gravitational acceleration g ceases to be a constant and the expression U = mgy
becomes invalid. Instead, we should return to Newton’s gravitational law, which
we had introduced in Chapter 4, and calculate the gravitational potential energy
therefrom.

Let us rewrite the gravitational force between the Earth (with mass ME ) and
an object of mass m at a distance of r from the center:

F = G
mME

r2 (5.15)

We again calculate the potential energy as the work performed against the gravi-
tational force. For this purpose, we need to apply the force −~F against this force
~F that is exerted when the mass m travels from a distance of r1 to a distance of
r2 (Figure 5.12). Accordingly,

Figure 5.12: Coordinates in a
gravitational potential energy.−W =

∫ r2

r1

(−~F) · d~r = −

∫ r2

r1

~F · d~r = −

∫ r2

r1

F dr cos 180◦

It can be seen from the �gure that the angle between the attractive force ~F and
the displacement vector d~r is 180◦ . Since cos 180◦ = −1 , and if the expression
for F is substituted, then

−W = GmME

∫ r2

r1

dr
r2 = GmME

[
−

1
r

]r2

r1

= −GmME

( 1
r2
−

1
r1

)
Again, if we write that the change in the potential energy is equal to this opposing
work, then

−W = U2 − U1 = −GmME

( 1
r2
−

1
r1

)
From here, the potential energy at any distance r can be written as:

U(r) = −
GmME

r
+ C

How do we choose the constant C ? It is impossible to choose the origin (r = 0 ),
as the expression diverges (U → ∞ ). Instead, most naturally, U = 0 is chosen at
the point where objects are too far apart to interact, in other words, when r → ∞ .
Then, C = 0 and the gravitational potential energy is obtained:

U(r) = −
GmME

r
(gravitational potential energy) (5.16)

It is seen from this formula that potential energy is zero at in�nity.

5.5 LAW OF CONSERVATION OF ENERGY

Combining the concepts of work, kinetic and potential energies, we can now
formulate the most important conservation law in physics.
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According to the Work-Energy theorem, the work performed by a net force
acting on an object is equal to the increase in kinetic energy (Equation 5.11):∫ 2

1

~Fnet · d~r = 1
2 mv2

2 −
1
2 mv2

1 = K2 − K1

We have also learned that we could separate the forces exerted on an object into
two groups as conservative and nonconservative. Then, we can divide the work
they perform into the following two terms:

~Fnet = ~Fc + ~Fnc∫ 2

1
(~Fc + ~Fnc) · d~r = K2 − K1

Now let us recall the de�nition of potential energy: The work performed against
conservative forces is equal to the increase in potential energy:∫ 2

1

~Fc · d~r︸      ︷︷      ︸
−(U2 − U1)

+

∫ 2

1

~Fnc · d~r︸       ︷︷       ︸
Wnc

= K2 − K1

In this expression, the work performed by nonconservative forces is denoted as
Wnc . Rearranging the terms on both sides, we arrive at the Law of Conservation
of Energy:

(K1 + U1) + Wnc = K2 + U2 (Law of Conservation of Energy) (5.17)

Here, K= 1
2 mv2 is the kinetic energy and U can be any of the gravitational, elastic

or other potential energies.
The law of conservation of energy states that, after we subtract the work of

nonconservative forces from the total initial energy (kinetic+potential), whatever
remains will be equal to the total �nal energy (kinetic+potential).

Here, we only took into consideration the conservation of mechanical energy.
Actually, the conservation of energy is still valid when all other types of energy
(electrical, magnetic, nuclear, etc.) are taken into consideration; it is a universal
law of physics.

Special case: If there are no nonconservative forces exerted on an object or
if their work is somehow zero, then,

Wnc = 0 −→ K1 + U1 = K2 + U2 (Special Energy Conservation) (5.18)

In such a case, no mechanical energy is lost and the sum of the energies (ki-
netic+potential) remains constant throughout the motion.

The sum of kinetic and potential energies is called total mechanical energy
and is denoted with E :

Figure 5.13: When a roller
coaster rushes downward, its po-
tential energy decreases to be
converted into kinetic energy.

E = K + U = 1
2 mv2 + U (total mechanical energy) (5.19)

The law of conservation of energy shows us that total mechanical energy is
conserved even if the kinetic or potential energies vary. In the equation (5.17), if
we state that K1 + U1 = E1 and K2 + U2 = E2 , then
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General : E1 + Wnc = E2

If Wnc = 0 : E1 = E2

The terms in the law of conservation of energy are only scalar quantities.
Considering the di�culty of working with vector equations such as Newton’s
second law ~F = m~a , energy conservation formulas provide great convenience.

Example 5.8

A block with a mass of 4 kg travels at a speed of 3 m/s on
a frictionless horizontal plane and hits a spring with one end
�xed to a wall. The spring constant is k = 100 N/m . How
much does the block compress the spring?

Answer
Since no friction occurs, the initial and �nal total energies
are the same:

E1 = E2
1
2 mv2 + 0 = 0 + 1

2 kx2

x =

√
m
k
v =

√
4

100
3 = 0.60 m

Example 5.9

The ABC section of the path in the �gure is frictionless, while
the coe�cient of friction is µ = 0.5 beyond C. A ball with a
mass of m = 2 kg is thrown along the path with a speed of
3 m/s from a point A at a height of 2 m above the ground.
(a) Find the speeds of the ball at points B and C.
(b) How far will it travel after point C before coming to a stop?

Answer
(a) Total mechanical energy is conserved at points A, B and
C, as there is no friction:

1
2 mv2

A + mgyA = 1
2 mv2

B + mgyB = 1
2 mv2

C + mgyC

From these equalities, we �nd the speeds vB and vC using
the values yA = 2, yB = 0, yC = 1.2 m :

vB =

√
v2

A + 2gyA =
√

32 + 2 × 10 × 2 = 7 m/s

vC =

√
v2

B − 2gyC =
√

72 − 2 × 10 × 1.2 = 5 m/s
(b) The kinetic energy of the object decreases from the point
C onward, due to the work done by friction:

1
2 mv2

C − f d = 1
2 mv2

C − (µmg) d = 0
d = v2

C/(2µg) = 52/(2 × 0.5 × 10) = 2.5 m .

Example 5.10

A spring with constant k = 100 N/m is �xed at the top of a
plane inclined at an angle of 37◦ . The coe�cient of friction of
the plane is µ = 0.5 . A block with a mass of 1 kg is thrown
with an initial speed of 10 m/s along the plane from the point
A located at the lower end and at a distance of 2 m from the
free end of the spring.
(a) What is the speed of the block when it reaches point B?
(b) How much does the block compress the spring?

Answer (a) We write the general energy conservation be-
tween points A and B:

EA + W f = EB

Here, W f = − f d is the work performed by the friction force
and is f = µmg cos 37◦ . Thus

1
2 mv2

A + mgyA − (µmg cos 37◦) d = 1
2 mv2

B + mgyB

If we choose the zero level of potential energy at point A,
then yA = 0 and the height of point B at distance d becomes
yB = d sin 37◦ . The speed vB is found when the other values
are also substituted:

102 − 16 = v2
B + 24 → vB = 7.7 m/s

(b) The block stops when it comes to some point C where
the compression of the spring is at a maximum: vC = 0 .
We write the conservation of energy between A and C. This
time, we have the elastic potential energy in addition to the
gravitational potential energy. If we denote the maximum
compression of the spring as x , then

1
2 mv2

A − µmg(d + x) = 0 + mgyC + 1
2 kx2

The height of point C is yC = (d + x) sin 37◦ and the numer-
ical values are substituted:

100 − 20(2 + x) = 100x2 → 5x2 + x − 3 = 0
The positive root of this 2nd degree equation is the result:

x = 0.68 m
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Example 5.11

The speed of a meteor approaching the Earth is measured as
100 m/s at a distance of 900 km from the sea level. At what
speed does this meteor crash on the Earth’s surface?
(For the Earth, GME=4 × 1014 m3/kg·s2 and RE=6400 km .)

Answer
The energy conservation is written as:

1
2 mv2

1 −
GMEm

R1
= 1

2 mv2
2 −

GMEm
r2

We simplify as follows:

v2 =

√
v2

1 + GME

(
1
r2
−

1
r1

)
(The product GME will appear very often in problems with
gravitational potential energy.) Here, the distances r1 and
r2 must be measured from the center of the Earth, while the
data is given as measured from the surface of the Earth. We
calculate them �rst:

r1 = 6400 + 900 = 7300 km = 7.3 × 106 m
r2 = 6400km = 6.4 × 106 m

From these values, we �nd the crash speed of the meteor:
v2 = 2780 m/s

Example 5.12

Escape speed from the Earth. A rocket or stone thrown from
the surface of the Earth must have a minimum speed to move
in�nitely far away and to not fall back to the Earth. This
is called the escape speed. Calculate the value of this speed.
(GME = 4 × 1014 m3/kg·s2 and RE = 6400 km .)

Answer What should the condition be for the object to not

fall back to Earth? When the object is slowing down, if its
speed becomes zero at some �nite distance, it will fall back.
Therefore, it should reach in�nity when its speed becomes
zero: v∞ = 0 . Accordingly, we write the energy conservation
for an object with mass m between the Earth’s surface and
in�nity:

1
2 mv2

esc −
GMEm

RE
= 1

2 m × 02 −
GMEm
∞

As 1/∞ = 0 , the escape speed formula is,

vesc =

√
2GME

RE
Substituting the numerical values, we get:

vesc = 11.2 × 103 m/s = 11.2 km/s

Example 5.13

An object with mass m is tied to the end of a rope with length
L = 50 cm and is thrown with a horizontal speed vA from the
point A at the bottom. With what minimum speed vA should
it be thrown to ensure that the rope does not get loose when
passing through the point B at the top?

Answer In example 4.19, we saw that the tension T at point
B should be at a minimum (T=0 ) so that the rope would not
get loose. Accordingly, the centripetal acceleration at point
B is only due to the weight mg . We thus �nd the minimum
speed vB :

Fr = mar → mg = m
v2

B

L
v2

B = gL
Now, we write the energy conservation between points A
and B. As the height of point B is 2L ,

1
2 mv2

A + 0 = 1
2 mv2

B + mg(2L)
Using the expression v2

B that we found above, the speed vA

is found as follows:
v2

A = gL + 4gL = 5mgL vA =
√

5gL = 5 m/s

Example 5.14

Blocks m1=1 kg and m2=2 kg are tied to each other with a
weightless rope passing through a frictionless pulley. The mass
m1 is tied to a spring with k=100 N/m on a surface with a co-
e�cient of friction µ=0.4 and the mass m2 hangs freely. Both
blocks are released when the spring is at normal length. Calcu-
late the maximum distance h that the mass m2 will descend.

Answer We could have solved this problem the long way
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again by formally writing the conservation of energy formula.
However, a quick thinking simpli�es the problem: Since the
blocks are at rest both at the beginning and at the end, the
elastic potential energy gained by the spring and the nega-
tive work done by the friction are solely due to the potential
energy loss m2gh of the mass m2 . Hence, we write:

m2gh = 1
2 kh2 + µm1gh

(When the mass m2 descends a distance of h , the spring also
extends for h and the mass m1 travels a distance of h .)
The height h is calculated from there:

h =
2(m2 − µm1)g

k
=

2(2 − 0.4 × 1) × 10
100

= 0.32 m

Example 5.15

A block with mass m = 1 kg is connected to two springs with
spring constants k1 = 30 N/m and k2 = 70 N/m on a fric-
tionless plane. The springs are initially at normal length when
the block is initially at rest. The block is pulled a distance
of x0 = 50 cm to the right from its equilibrium position and
released.
(a) What is the speed of the block when it is at a distance of

40 cm from the equilibrium position?
(b) What is the maximum speed of the block and at what

point is it reached?

Answer
(a) When one of the springs is extended by x , the other is
compressed by the same amount, and the total elastic po-

tential energy is 1
2 (k1 + k2)x2 . Hence, we may consider this

system as a single spring with a spring constant of (k1 + k2) .
If the block is released from rest with springs extended by x0
at the start, then the speed v at a later extension x is found
from the conservation of energy:

1
2 (k1 + k2)x2

0 = 1
2 mv2 + 1

2 (k1 + k2) x2

v =

√
(k1 + k2)(x2

0 − x2)
m

Calculating for x = 0.4 m , we �nd that v = 3 m/s .
(b) For the speed to be maximum, according to the expression
above, the factor (x2

0 − x2) in the square root must be maxi-
mum. As x0 was given at the beginning, x must be minimum,
in other words, x = 0 . Thus, the block reaches maximum
speed when passing through the equilibrium position. The
maximum speed is found when we set x = 0 in this formula:

vmax =

√
k1 + k2

m
x0 = 5 m/s

Multiple-choice Questions

1. What is the kinetic energy of an object with mass 2 kg
and speed 2 m/s?

(a) 2 J (b) 4 J (c) 6 J (d) 8 J

2. Which is incorrect?
(a) Force perpendicular to the displacement performs
no work.
(b) Force opposite to the displacement performs nega-
tive work.
(c) Work is the product of the parallel component of
the force to the displacement with the displacement.
(d) Work is the product of the perpendicular component
of the force with the displacement.

3. What is the speed of an object with mass 1 kg and ki-
netic energy 8 J?

(a) 3 m/s (b) 4 m/s (c) 5 m/s (d) 6 m/s

4. If the work performed by the net force on an object is
zero, then which of the following is correct?

(a) Its kinetic energy remains constant.
(b) Its potential energy remains constant.
(c) Its kinetic energy increases, while its potential en-
ergy decreases.
(d) Its kinetic energy decreases, while its potential en-
ergy increases.

5. Which of the following is correct for a simple pendulum?
(a) Potential is minimum at the highest point.
(b) Kinetic energy is maximum at the highest point.
(c) Potential energy is minimum at the lowest point.
(d) Total energy is minimum at the lowest point.

6. What is the power of a crane if it is able to pull a mass
of 100 kg upwards at a speed of 2 m/s?

(a) 1 kW (b) 2 kW (c) 3 kW (d) 4 kW

7. Which of the following performs the most work?
(a) A man carrying a stone with a force of 10 N for 2 m.
(b) A man carrying a stone with a force of 5 N for 3 m.
(c) A weight-lifter keeping dumbbells of 200 kg �xed.
(d) A kid who raises a mass of 20 kg to a height of 1 m.
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8. Which of the following is incorrect?
(a) The work performed by a conservative force is in-
dependent of the path.
(b) The work performed by a nonconservative force is
dependent on the path.
(c) Potential energy can be de�ned for a conservative
force.
(d) Potential energy can be de�ned for a nonconserva-
tive force.

9. An elevator is being pulled upwards at a constant speed.
The work performed on the elevator is:

(a) Zero.
(b) Positive.
(c) Negative.
(d) Constant.

10. If the work done by a net force on an object at rest is
doubled, its �nal speed increases by how many times?

(a) 1 (b)
√

2 (c) 2 (d) 4

11. How much should the net force acting on an object at
rest be increased such that its �nal speed increases 4
times?

(a) 2 (b) 4 (c) 8 (d) 16

12. If an amount of work 5 J is needed to extend the length
of a spring by 1 cm , then how much work should be
done to extend it by 2 cm?

(a) 6 J (b) 10 J (c) 15 J (d) 20 J

13. Which of the following is correct for the gravitational
potential energy of the Earth?

(a) It is zero at the center of the earth.
(b) It is zero at in�nity.
(c) It is zero on the surface of the earth.
(d) It is zero at the center of the Sun.

14. Which of the following is correct for kinetic energy?
(a) It depends on the direction of motion of the object.
(b) It may be negative.
(c) It is always positive.
(d) It is the same for all observers.

15. Which of the following is correct for the gravitational
potential energy?

(a) It is inversely proportional to the square of the dis-
tance.
(b) It is proportional to the total mass of the two objects.
(c) It is inversely proportional to the distance.
(d) It is inversely proportional to the mass.

16. The rotation radius is doubled for an arti�cial satellite
rotating on an orbit around the Earth. How does its
potential energy change?

(a) It halves.
(b) It doubles.
(c) It decreases to one fourth.
(d) It increases by 4 times.

17. An car applies the breaks to stop on a horizontal road.
Where is the kinetic energy that it lost spent?

(a) In the work performed by the friction force.
(b) To increase its potential energy.
(c) To the heating of the engine.
(d) All of the above.

18. Which of the following is correct for an object sliding
along a path?

(a) The friction force does not perform any work.
(b) The normal force performs positive work.
(c) The normal force performs negative work.
(d) The friction force performs negative work.

19. Which of the following is incorrect?
(a) Friction force is conservative.
(b) Gravitational force is conservative.
(c) Spring force is conservative.
(d) Friction force is nonconservative.

20. Two satellites are rotating in orbits around the Earth at
radii r1 < r2 . Which of the following is correct for the
gravitational potential energy?
(a) U1 < U2 (b) U1 = U2 (c) U1 > U2 (d) None.

Problems

5.1–3 Work, Kinetic Energy, Power

5.1 Calculate the work performed by the forces in the �gure
on the right, along the 5 m horizontal displacement.

[A: 43 J, −18 J, 0 .] Problem 5.1
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5.2 A block with weight W=10 N is pulled upward on a
37◦ inclined plane with a force F=9 N that is parallel to the
inclined plane at a constant speed over a distance of 2 m . (a)
What is the work performed by the force F ? (b) The work
performed by the gravitational force? (c) The work performed
by the friction force? [A: (a) 18 J , (b) −12 J , (c) −6 J .]

Problem 5.3
5.3 Find the work performed by the variable force F(x) in
the �gure. [A: 4.5 J .]

5.4 A force exerted on an object is given as:
F(x) = 6x2 − 2x (newton)

Calculate the work performed by this force within the range
x : [0.5 m] . [A: 225 J .)

5.5 5 J work is performed to extend a spring by 10 cm . How
much work should be done to further extend it by 30 cm?

[A: 80 J .]

5.6 An object at rest with mass 2 kg starts moving and
reaches a speed of 8 m/s over a distance of 5 m . What is
the constant net force acting on this object and how much
work has it performed? [A: 12.8 N and 64 J .]

5.7 A cannon has a barrel-length of 6 m . When a shell of
mass 20 kg is �red, it leaves the barrel at a speed of 200 m/s .
(a) What is the kinetic energy of the shell? (b) What is the
the work done on the shell by the average force inside of
the barrel? (c) What is the average force exerted on the shell
inside of the barrel? [A: (a) 400 kJ , (b) 400 kJ , (c) 67 kN .]

5.8 An athlete with a mass of 60 kg climbs up a hanging rope
of length 10 m in 20 s . Calculate the power of the athlete in
units of watts and horsepower. [A: 300 W, 0.4 HP .]

5.9 The engine of a car is able to drive it at a constant speed
of 72 km/hour while delivering a power of 100 HP . As the
traction force of the car is 1400 N , what percent of the power
of the engine is lost to friction and air resistance?

[A: 62 % .]

5.4 Potential Energy

5.10 The normal length of a spring attached to the ceiling is
1 m . The length of this spring becomes 105 cm when a mass
of 200 g is hung to its free end. (a) Calculate the spring con-
stant. (b) How much will the spring extend when its potential
energy is 5 J? [A: (a) 40 N/m , (b) 50 cm .]

Problem 5.11
5.11 Calculate the gravitational potential energy of the mass
m = 3 kg at the points 1, 2, 3 and 4 shown in the �gure. (In-
dicate where you choose your zero level.)

[A: zero level on the ground: 480, 0, 360, 210 J .]

5.12 A telecommunication satellite with a mass of 3 tons was
placed into orbit at a distance of 36 000 km from the surface
of the Earth. How much energy is required to lift this satellite
to such a height? (Use the values GME=4 × 1014 m3/kg·s2

and RE=6400 km .) [A: 1.6 × 1011 J .]

5.5 Law of Conservation of Energy

Problem 5.13
5.13 A mass of m1=1 kg is at rest on the bottom of a fric-
tionless plane inclined at 37◦ . It is tied to another mass of
m2=2 kg with a rope that passes through a frictionless pulley.
At the start, the mass m2 is released from a height of 3 m
from the ground. What is the speed of mass m2 when it
reaches the ground? [A: 5.3 m/s .]

Problem 5.14
5.14 A block with mass m is thrown at a speed of 5 m/s up
from the lower end of a plane inclined at an angle of 30◦ and
with a coe�cient of friction µ=0.5 . How much distance does
it travel along the inclined plane until it stops? (Note: The
mass m will be canceled at the end of the calculation.)

[A: 1.34 m .]

Problem 5.15
5.15 A spring with a constant of k=200 N/m is �xed after
point C along the frictionless path ABC in the �gure. A ball
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with mass 2 kg is released from rest at the point A. (a) What
will be the speed of the ball at points B and C? (b) How much
will the ball compress the spring?

[A: (a) vB = 6, vC = 5 m/s , (b) x = 0.5 m .]

Problem 5.16

5.16 A spring with a constant of k=200 N/m is �xed to the
lower end of a plane inclined at an angle of 37◦ and a coef-
�cient of friction of µ=0.4 . A block with mass m = 1 kg is
thrown from point A downwards at a speed of 5 m/s . The
free end B of the spring is at a distance of AB=2 m . (a) At
what speed will the block hit the free end of the spring? (b)
What is the maximum compression of the spring, in other
words, what is BC = x? [A: (a) 6 m/s , (b) 0.44 m .]

Problem 5.17

5.17 A portion of a frictionless rail track is bent as a circular
loop with radius R . A block with mass m is released from
rest at a height h from one end of the rail. From what height
h should the block be released such that it can complete the
loop without leaving the rails? (Hint: As long as the block
touches the rails, there is some normal force acting on it.
What should be its minimum value at the peak point?)

[A: h = 5R/2 .]

Problem 5.18
5.18 A ball is compressed against a spring �xed on a fric-
tionless table and released. We would like the ball to �y o�
of the edge of the table and fall inside a bowl on the �oor
at a distance of 2 m . In a �rst trial in which the spring is
compressed by 20 cm , the ball falls 40 cm short of the bowl.
How much should the spring be compressed so that the ball
falls into the bowl in the second trial? (Hint: There is no need
to completely solve the horizontal projectile problem. The
ball’s time of �ight will be the same in both trials.)

[A: 25 cm .]

Problem 5.19
5.19 A spring gun with a spring constant k=500 N/m is able
to shoot bullets of 50 g . It is observed that a bullet �red by
this gun at an angle of 37◦ to the horizontal reaches a height
of 180 cm . (a) Find the initial speed of the bullet, (b) Find the
amount of compression of the spring.

[A: (a) 10 m/s , (b) 0.1 m ]

Problem 5.20
5.20 A ball released at the peak point of a frictionless spheri-
cal surface with a radius of R starts to slide down the surface.
At what angle θ will it leave the surface? (Hint: The normal
reaction force is zero where it leaves the surface. The cen-
tripetal force needed during the circular motion is simply the
radial component of the weight.)

[A: cos θ = 2/3, θ = 48◦ .]



6
IMPULSE AND

MOMENTUM

The forces generated during the
collision of billiard balls have a
very complex structure and are
di�cult to examine.
However, there is one quantity
that always remains the same
before and after the collision.
We will �nd out what this is in
this chapter. (Photo: Dave Jack-
son)

Collision problems are one of the cases in which direct application of Newton’s
laws is di�cult. When two billiard balls collide, action-reaction forces arise
between them during that very short contact. The details of these forces are
complicated and very di�cult to examine. However, these two balls have some
well-de�ned velocities before and after the collision. Is it possible to �nd a relation
between the initial and �nal states without looking into the internal mechanisms
of the collision?

In this chapter, we will de�ne the concepts of impulse and momentum, which
are easy to interpret for the interaction of two or more particles. Furthermore,
the momentum concept leads to another law of conservation that will make it
easier to solve many problems.
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6.1 IMPULSE AND MOMENTUM

Let us consider Newton’s second law. We know that acceleration in this law
is the derivative of velocity:

~F = m ~a = m
d~v
dt

=
d(m~v)

dt

Mass m can be included in the derivative because it is constant. This expression
shows that force itself is also the derivative of another quantity.

De�nition: The momentum vector of an object with mass m and velocity
vector ~v is

~p = m~v (Momentum) (6.1)

The unit of momentum is kg.m/s and does not have a particular name. Newton’s
second law can thus also be written as follows (Newton had actually expressed
the second law in this form):

Figure 6.1: Momentum vector. ~F =
d~p
dt

(6.2)

Let the same object with mass m initially have a momentum ~p = m~v and
then, let a constant force ~F act on it during a short time interval ∆t . After the
interaction, the object may have a di�erent momentum ~p ′ = m~v ′ . If we rewrite
Eq. (6.2) with ∆t ,

~F =
∆~p
∆t

=
~p ′ − ~p

∆t
or

~p + ~F∆t = ~p ′

m~v + ~F∆t = m~v ′
(6.3)

This expression resembles the work-energy theorem that we discussed in Chapter
5. There, the increase in kinetic energy was equal to the work performed by the
force ~F . And, in this formula, the increase in momentum is equal to the product
of force with time. It is de�ned as a new quantity:

De�nition: The integral of a variable force ~F over a �nite interval [t1, t2] ,

~J =

∫ t2

t1

~F dt (Impulse) (6.4)

is called the impulse of the force ~F . It has the same unit as momentum (kg.m/s ),
and is mostly used for forces that act for a short period of time.

Let us rewrite the above Eq. (6.3) in terms of impulse and momentum:

~p +~J = ~p ′ (Impulse-momentum theorem) (6.5)

This result is called the Impulse-momentum theorem. We thus obtain a simple
expression between the initial and �nal velocities of the object without having to
know its acceleration. This is equivalent to Newton’s second law.

Unlike work and energy, impulse and momentum are vector quantities. Their
directions should be taken into consideration when used in formulas.



6.2. LAW OF CONSERVATION OF MOMENTUM 97

Example 6.1

A tennis ball incoming with a speed of 20 m/s is hit by a racket
and is sent back at a speed of 30 m/s . The mass of the ball is
56 g and its contact with the racket lasts 0.05 seconds. Calcu-
late the average force acting on the ball.

Answer
We should be careful to treat velocities as vectors when us-
ing the impulse-momentum theorem (Eq. 6.3). Choosing the
direction of the outgoing ball as the positive x -direction, we
write:

mv + F ∆t = mv′

0.056 × (−20) + F × 0.05 = 0.056 × (+30)

Solving for F , we �nd that
F = 56 N .

Example 6.2

A ball with a mass of 1 kg and a speed of v=10 m/s hits a wall
at an angle of 53◦ and is re�ected back by the same angle and
at the same speed. If the ball is in contact with the wall for
0.02 s , �nd the direction and magnitude of the force applied by
the wall on the ball.

Answer We write the impulse-momentum theorem in 2-

dimensions:
~F∆t = m~v ′ − m~v → ~F =

m
∆t

∆~v

Hence, ~F will have the same direction as the vector ∆~v .
As seen in the �gure, when we calculate the vector ∆~v =

~v ′ −~v by the triangle rule as the sum [~v ′ + (−~v)] , it is found
to be perpendicular to the wall.
Therefore, the vector ~F that is proportional to ∆~v will also
be perpendicular to the wall and in the +x direction.

As the initial and �nal velocities have equal magnitude,
we get ∆v = 2v cos 37◦ . From this, we can calculate the
magnitude of the force F :

F =
m ∆v

∆t
=

2mv cos 37◦

∆t
=

2 × 10 × 0.8
0.02

= 800 N

6.2 LAW OF CONSERVATION OF MOMENTUM

Rewriting Newton’s second law in terms of momentum is not very interesting
for a single object. Its real impact can be seen when expressed for two interacting
objects.

Let us consider two masses with initial momentums ~p1=m1~v1 and ~p2=m2~v2 .
Let us further consider that no external force acts on this system and that the
masses only interact with each other (Figure 6.2). Let the momentums become
~p1
′ = m1~v1

′ and ~p2
′ = m2~v2

′ after this interaction.
Let us write Newton’s law for the mass m1 in its Eq. (6.3) form:

Figure 6.2: Two interacting
masses.~p1 + ~F21 ∆t = ~p1

′

In this equation, ~F21 denotes the force applied by the second object on the �rst.
Let us write the same law for the second object:

~p2 + ~F12 ∆t = ~p2
′

If we add these two equations, we get:

~p1 + ~p2 + (~F21 + ~F12) ∆t = ~p1
′ + ~p2

′

The sum inside of the brackets is zero, because ~F21 = −~F12 according to the third
law. From this, we get the law of conservation of momentum:

~p1 + ~p2 = ~p1
′ + ~p2

′ = constant (law of conservation of momentum) (6.6)
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Notice that there is no need to know the details of the interaction between the
two objects.

This is a very general result, and is also valid for more than two objects. In
such a case, the total momentum of a system is de�ned as follows:

~P = ~p1 + ~p2 + · · · + ~pN (total momentum) (6.7)

Therefore, the general law of conservation of momentum can be expressed as:

Law of Conservation of Momentum

If the external forces acting on a system are zero, the total mo-
mentum of the system will remain constant in time:∑

i

F ext
i = 0 =⇒ ~P = ~P ′

~p1 + ~p2 + · · · + ~pN = ~p1
′ + ~p2

′ + · · · + ~pN
′

(6.8)

This vector equation is true for each component. Let us write them for two
objects:

m1v1x + m2v2x = m1v
′
1x + m2v

′
2x

m1v1y + m2v2y = m1v
′
1y + m2v

′
2y

(6.9)

Important notice: The law of conservation of momentum is actually more
general than the one that we stated above. Let us say brie�y that the external
forces need not be zero; it is su�cient that their impulse be zero for the the law of
conservation of momentum to hold. For example, there may be external forces,
but the time interval may be so short that their impulse can be neglected. We will
not go into these �ne points.

Example 6.3

A block withmass m1 = 1 kg travels at a speed of 8 m/s on fric-
tionless rails and collides into a block with amass of m2 = 10 kg
traveling in the same direction at a speed of 5 m/s . After the
collision, the block m2 is observed to travel at a speed of 6 m/s
in the same direction. Find the magnitude and direction of the
�nal velocity of block m1 .

Answer
Let us write the formulas (6.9) that we found for the conser-
vation of momentum in one dimension (the subscripts are
not necessary):

m1v1 + m2v2 = m1v
′
1 + m2v

′
2

Choosing +x in the direction of motion of the two blocks,
we get

1 × 8 + 10 × 5 = 1 × v′1 + 10 × 6
And, from here, we get v′1 = −2 m/s . The negative sign
shows that the block m1 is going backwards.

Example 6.4

A mass M = 10 kg traveling at a speed of 8 m/s on a fric-
tionless horizontal road suddenly explodes and splits into two
pieces. The piece with mass m2=7 kg travels in the same direc-
tion with a speed of 14 m/s . Find the velocity of the piece with
mass 3 kg .

Answer There is a single mass M at the start. If we indicate
its velocity with V , conservation of momentum is expressed
as follows:
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MV = m1v
′
1 + m2v

′
2

Substitute m1=3, m2=7 kg :
10 × 8 = 3v′1 + 7 × 14

From here, we get v′1 = −6 m/s . The velocity of mass m1 is
in the opposite direction.

6.3 COLLISIONS IN ONE DIMENSION

In this section, we will examine collision problems in more detail. This is
a very important class of problems that can arise, from billiard balls to shells
hitting targets, from atomic particles smashing into each other to celestial bodies
interacting over immense distances via the gravitational force.

We will �rst consider collisions in one dimension to minimize mathematical
di�culties. Collisions are classi�ed into two groups in this analysis.
Elastic Collisions

We have established that the total momentum of the system is conserved in
all collisions in which the net external force is zero. Let us write this only for the
x component:

m1v1 + m2v2 = m1v
′
1 + m2v

′
2 (6.10)

(Here, we do not write the x -subscripts, but you must remember that these
velocities are vectors, in other words, they can have positive or negative values.)

Collisions in which the total kinetic energy of the colliding objects is conserved
are called elastic collisions. For example, in collisions between steel or glass balls,
when the balls come into contact with each other, their surfaces stretch like a
spring and store the energy. After the collision, as they return to their previous
forms, this potential energy converts into kinetic energy. This property is not
observed in collisions between objects made of clay or dough; they get deformed
and lose the kinetic energy as heat.

Figure 6.3: Collision in one di-
mension.

According to this de�nition, kinetic energy is also conserved in elastic colli-
sions:

1
2 m1v

2
1 + 1

2 m2v
2
2 = 1

2 m1v
′2
1 + 1

2 m2v
′2
2 (6.11)

Therefore, by solving the two Eqs.(6.10 and 6.11), we can �nd the velocities v′1
and v′2 after the collision. Explicit expressions of the general solution exist, but
they are too complicated to reproduce here.

Let us seek the solution for a special case here. If mass m2 is at rest before
collision, we can set v2 = 0 in the two equations above and simplify as follows:

m1v1 = m1v
′
1 + m2v

′
2

m1v
2
1 = m1v

′2
1 + m2v

′2
2

Let us isolate the unknown v′2 in both equations:

m1(v1 − v
′
1) = m2v

′
2

m1(v2
1 − v

′2
1 ) = m2v

′2
2

If we write the di�erence of two squares as (v1 − v
′
1)(v1 + v′1) and divide both

sides, we get
v1 + v′1 = v′2
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and we can use this equation instead of the energy equation with squares. Now, if
we consider this last expression together with the equation for the conservation
of momentum (6.10), we get the following solution:

v′1 =
m1 − m2

m1 + m2
v1

v′2 =
2m1

m1 + m2
v1

(6.12)

Now, let us draw some important conclusions from these results:
1. If the masses are equal (m1=m2 ): We get v′1 = 0 and v′2 = v1 . In other words,

they exchange their velocities; the incoming object stops and the other one
starts with exactly the same velocity. We observe this in billiard balls in
head-on collisions. The elegant toy called Newton’s cradle uses this property
(Figure 6.4): When the ball at one end is pulled and released, the balls in the
middle remain motionless and the ball at the other end bounces o� with the

Figure 6.4: Newton’s Cradle.
Because the masses are equal,
the momentum of the incoming
ball is fully transferred to the
last ball.

same velocity. Because the masses are equal, each ball in the middle transfers
all of its energy and momentum to the next one and remains motionless.

2. If m1 > m2 , in other words, if the incoming mass is heavier, Eqs. (6.12) tell us
that the �nal velocities of both masses will be positive and both will continue
in the same direction. A small mass at rest will never bounce a heavier
mass back. When a truck crashes into a motionless automobile, it drags it
along. (The truck-automobile collision is not elastic, but we may expect this
behavior as an approximation.)

3. If m1 < m2 , in other words, if the incoming mass is lighter, the �nal velocity
of the incoming mass will be negative, which means that it will bounce back.
When an automobile crashes into a truck, it may sometimes bounce back.

4. If the incoming mass is much much lighter (m1/m2 ≈ 0 ), then the �nal
velocities will be v′1 ≈ −v1 and v′2 ≈ 0 . In other words, the incoming mass
will bounce back with the same velocity and the heavy mass will not move.
It is as if it is bouncing back from a wall. Rutherford discovered the structure
of the atom using this feature. When he bombarded heavy gold (Au) atoms
with lighter alpha particles, he observed that some alpha particles bounced
back with the same velocity. This was a clue to the existence of a heavy
nucleus at the center of the atom.

Inelastic Collision
Collisions in which kinetic energy is not conserved are called inelastic colli-

sions. In this case, the colliding objects can become deformed and kinetic energy
can be transformed into heat. Thus, the total kinetic energy of the system will
have decreased. The collisions of plastic balls used in sports or the collision of
cars in tra�c are inelastic collisions.

Conservation of momentum is still valid in inelastic collisions:

m1v1 + m2v2 = m1v
′
1 + m2v

′
2 (6.13)

However, we can no longer write conservation of kinetic energy. Therefore, it is
di�cult to �nd both of the �nal velocities. Additional information may be given
in certain cases, so that �nal velocities can be calculated in such cases.
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Totally Inelastic Collision
In this special case of inelastic collision, the two objects stick together after

the collision. A meteor striking Earth or a bullet or an arrow hitting a target are
examples of such types of collisions. In this case, the �nal velocities of the objects
are equal and the conservation of momentum gives the solution:

v′1 = v′2 = v′

m1v1 + m2v2 = (m1 + m2)v′

From here, we can �nd the common �nal speed:

Figure 6.5: Cars are manufac-
tured in such a way that their
front and rear parts collapse
readily in a collision. Thus, less
energy and momentum will be
transferred to the passengers.

v′ =
m1v1 + m2v2

m1 + m2
(6.14)

Example 6.5

A ball with mass 3 kg travels at a speed of 10 m/s and collides
into a ball with mass 5 kg at rest. As the collision is elastic,
�nd the �nal velocities of the balls.

Answer
We can use Eqs. (6.12) derived for elastic collision, because
one of the masses is at rest:

v′1 =
m1 − m2

m1 + m2
v1 =

3 − 5
3 + 5

× 10 = −2.5 m/s

The negative sign means that the ball m1 bounces back. The
velocity of the second ball is calculated using the same for-
mula:

v′2 =
2m1

m1 + m2
v1 =

2 × 3
8
× 10 = 7.5 m/s

Example 6.6

A block with a mass of m1=1 kg and a speed of 5 m/s
hits another block with a mass of m2=2 kg at rest. After the
collision, the block m2 climbs up to a height of 45 cm on a fric-
tionless inclined plane. Calculate the velocities of these blocks
right after the collision.

Answer
We �rst �nd the velocity of block m2 on the ground level.
According to conservation of energy, its potential energy at
height h is supplied by the kinetic energy on the ground:
1
2 m2v

′2
2 = m2gh → v′2 =

√
2gh =

√
2 × 10 × 0.45 = 3 m/s

We then write conservation of momentum for the collision:
m1v1 + m2v2 = m1v

′
1 + m2v

′
2

We calculate v′1 by substituting the numerical values:
1 × 5 + 0 = 1 × v′1 + 2 × 3

v′1 = −1 m/s

Example 6.7

A ballistic pendulum is a device used to calculate the muzzle
velocities of bullets. It is a pendulum constructed by hanging a
wooden block with a very high mass at the end of a rope with
length L . When a bullet with mass m traveling at a speed v
embeds itself into the wooden block with mass M , the (bul-
let+block) system rises by h . Calculate the speed of the bullet in

terms of height h . Numerical example: m = 50 g , M = 5 kg ,
L = 2 m and h = 80 cm .

Answer
We �rst �nd the speed of the (bullet+block) system right after
the collision, in other words, when the pendulum is in the
vertical position. We write conservation of momentum for
this inelastic collision:

m1v1 + m2v2 = (m1 + m2)v′

Here, we have m1=m and m2=M , and if we show the �nal
velocity of the system with V , we get:

mv + M.0 = (m + M) V → V =
m

m + M
v

The (bullet+block) system rises to a height h due to its ki-
netic energy. According to conservation of energy, all of the
kinetic energy at the start will be converted into gravitational
potential energy:
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1
2 (m + M) V2 = (m + M) gh

Substituting V , we solve for v and get

v =
m + M

m

√
2gh

With the given numerical values, we get v = 400 m/s .

Example 6.8

A spring with spring constant k = 100 N/m is mounted onto
the front of a block with a mass of 2 kg at rest on a frictionless
horizontal plane. Another block with a mass of 1 kg approaches
at a speed of 6 m/s and collides with the spring. (a) How much
will the spring get compressed and what will the velocities of
the blocks be at that instant? (b) What will the velocities of the
blocks be after they are separated?

Answer
This is also an elastic collision, because energy is stored by
the spring during the collision and later given back. Accord-
ingly, we can immediately solve item (b). However, let us �rst
look into item (a). It seems that there are three variables (the
�nal velocities of the blocks and the amount of compression
of the spring) and we only have two equations. However,
consider this point: at the instant of maximum compression,
the velocities of the blocks will be equal for a short instant.

Conservation of energy and momentum is thus su�cient for
the solution.
(a) If we use v′ to show the common velocities of the blocks
when the spring is compressed to a maximum, conservation
of momentum is expressed as follows:

m1v1 + 0 = (m1 + m2) v′

v′ =
m1v1

m1 + m2
=

1 × 6
1 + 2

= 2 m/s

Spring potential energy is also taken into consideration when
writing conservation of energy:

1
2 m1v

2
1 = 1

2 (m1 + m2) v′2 + 1
2 kx2

From here, we can calculate the amount of compression of
the spring:

x =

√
m1v

2
1 − (m1 + m2)v′2

k
= 0.49 m .

(b) After the blocks are separated, the initial kinetic energy
is regained, in other words, the collision is elastic. We use
the formulas (6.12), because the block m2 is at rest before
collision:

v′1 =
m1 − m2

m1 + m2
v1 =

1 − 2
1 + 2

× 6 = −2 m/s

v′2 =
2m1

m1 + m2
v1 =

2
3
× 6 = 4 m/s

6.4 COLLISIONS IN TWO DIMENSIONS

Collisions in one dimension are rarely observed. Two colliding objects usually
go o� into di�erent directions. In the most general case, collisions in three
dimensional space can also be examined in two dimensions. This is because, the
momentum vectors of the two objects intersect at the collision point and form a
plane that is called the collision plane. Since total momentum is conserved, the
�nal momentum vectors should also lie in this plane. Hence, it will be su�cient
to study collisions in two dimensions.

Figure 6.6: Coordinates for a
collision in two dimensions.

Eq. (6.6) which gives the law of conservation of momentum was found as a
vector equation. Therefore, it should be valid separately for both components in
a collision in two dimensions.

~p1 + ~p2 = ~p1
′ + ~p2

′ =⇒

 m1v1x + m2v2x = m1v
′
1x + m2v

′
2x

m1v1y + m2v2y = m1v
′
1y + m2v

′
2y

(6.15)
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There are four unknown variables in this two-equation system, because the
�nal velocities have two components and the problem cannot be solved without
additional information. Another equation is provided by the conservation of
energy for elastic collisions:

1
2 m1v

2
1 + 1

2 m2v
2
2 = 1

2 m1v
′2
1 + 1

2 m2v
′2
2 (for elastic collision) (6.16)

Hence, an additional equation is needed in order to solve the problem. In general,
one of the variables is measured experimentally.

There is no such problem for totally inelastic collisions. If we write the �nal
velocities as equal, we get

~v1
′ = ~v2

′ = ~v ′

m1v1x + m2v2x = (m1 + m2)v′x
m1v1y + m2v2y = (m1 + m2)v′y

(6.17)

Two equations with two unknowns will give the components of the �nal velocity.

Example 6.9

A car with a mass of m1=800 kg traveling East and a pickup
truck with a mass of m2=1200 kg traveling North collide head
on in an intersection and stick together. Both drivers claim
that the other entered the intersection with excessive speed. You
arrive at the site as the expert. You measure the black tire tracks
left on the tar surface and �nd that the tracks make an angle

of 30◦ with the eastern direction. Using only this information,
calculate the ratio v2/v1 and determine which car was going
faster.

Answer
Choosing the axes as shown in the �gure, we use Eqs. (6.17)
for a totally inelastic collision in two dimensions:
m1v1x+m2v2x = (m1+m2)v′x → m1v1+0 = (m1+m2)v′ cos 30◦

m1v1y+m2v2y = (m1+m2)v′y → 0+m2v2 = (m1+m2)v′ sin 30◦

Dividing both sides of the equation, we �nd the ratio v2/v1 :
v2

v1
=

m1

m2
tan 30◦ =

800
1200

× 0.58 = 0.38

According to this result, the car with mass m1 was traveling
approximately 3 times faster than the pickup truck. (Do not
underestimate this example. Conservation of momentum and
energy are the most important tools of tra�c experts.)

Example 6.10

Proton-proton collisions are an important source of infor-
mation in nuclear physics. A proton with a speed of 5×106 m/s
has an elastic collision with another proton at rest. After the
collision, the incoming proton is observed to scatter o� at a
speed of 3 × 106 m/s . Calculate the scattering angles of the
protons and the speed of the second proton.

Answer
The velocity v′2 of the second proton can immediately be

found from conservation of energy (m1=m2=m ):
1
2 mv2

1 + 0 = 1
2 mv′21 + 1

2 mv′22
v′2 =

√
v2

1 − v
′2
1 =

√
52 − 32 × 106 = 4 × 106 m/s

In order to �nd the angles, we must write conservation of
momentum in two dimensions with axes as shown in the
�gure:
m1v1x + m2v2x = m1v

′
1x + m2v

′
2x → v1 = v′1 cos θ1 + v′2 cos θ2

m1v1y + m2v2y = m1v
′
1y + m2v

′
2y → 0 = v′1 sin θ1 − v

′
2 sin θ2

Substituting known velocities and simplifying, we get:
5 = 3 cos θ1 + 4 cos θ2 → 4 cos θ2 = 5 − 3 cos θ1

0 = 3 sin θ1 − 4 sin θ2 → 4 sin θ2 = 3 sin θ1

We add the squares of both sides and use the identity (sin2 θ2+

cos2 θ2 = 1) , �nding that
16 = 9 sin2 θ1 + (9 cos θ2

1 − 30 cos θ1 + 25)
We again use the identity (sin2 θ1 + cos2 θ1 = 1) and simplify:

cos θ1 = 0.6 → θ1 = 53◦



104 6. IMPULSE AND MOMENTUM

Substituting this θ1 value in the equation for the y -
component of momentum, we �nd θ2 :

sin θ2 =
3
4

sin θ1 =
3
5
→ θ2 = 37◦

6.5 CENTER OF MASS

When we try to carry a piece of timber, we carry it by lifting it from its center.
If one end of a stick is heavier than the other, we hold it somewhere near the
heavier end (Figure 6.7). People on a boat will not gather at the same spot, but will

Figure 6.7: The point that bal-
ances a stick with a heavier end.

sit at di�erent places so that the boat will not capsize. These examples indicate
that there is a mean point that represents the mass of extensive objects.

De�nition: The “weighted” average of mass positions constituting a system
is called the center of mass (CM).

By the weighted average, we understand that each position is included in the
average as multiplied by the value of the mass at that position.

According to this de�nition, the expression for the center of mass of
m1,m2 . . .mN located at x1, x2 . . . xN along the x -axis will be as follows:

xcm =
m1x1 + m2x2 + · · · + mN xN

m1 + m2 + · · · + mN
=

∑N
i=1 mixi∑N

i=1 mi
(6.18)

The y - and z -coordinates of the center of mass can be similarly de�ned in three-
dimensional space:

ycm =

∑
i miyi

M
, zcm =

∑
i mizi

M
(6.19)

Here, M = m1 + · · · + mN is the total mass. If we write these three formulas as a
single vector formula, we get:

~rcm =

∑
i mi~ri

M
(center of mass) (6.20)

In the simplest system, let us consider two point masses m1 and m2 located
at positions x1 and x2 along the x -axis (Figure 6.8). Applying the formula for
center of mass, we get

xcm =
m1x1 + m2x2

m1 + m2
(6.21)

If the masses are equal (m1=m2) , the center of mass is the midpoint xcm =

Figure 6.8: The center of mass
of two objects.

(x1 + x2)/2 . This expression conforms to our daily experience. We hold a straight
stick from the center, but if a weight is put on one end, we hold it from a point
nearer to that side.
Center of Mass of a Continuous Mass Distribution

For objects that have a continuous mass distribution, we can calculate their
center of mass using either one of the following two methods:

1. Symmetry. As seen in Figure 6.9, objects may have certain geometrical
shapes, such as a triangle, square, rectangle, disc or circle, that have a center
of symmetry. In addition, if they are homogeneous, in other words, if their
density is distributed evenly, then we can assume that the center of mass will
be located at that center of symmetry. The summing expression for center of
mass that we found for pointlike objects can thus also be applied to whole
symmetrical parts.
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Figure 6.9: The centers of mass
of symmetric objects whose mass
is distributed homogeneously.

2. Integration. If the mass distribution in space is known as a function of
position, integration technique can be used to �nd the center of mass. Let us
see how the integral form is set up.

Let us divide the object with mass M into N number of small ∆mi masses
located at the position (xi, yi, zi) . Applying the formula for center of mass for
these small parts, for example, for the x -component we get

xcm ≈

∑
i xi ∆mi∑

i ∆mi
=

∑
i xi ∆mi

M

The sum in the denominator is written as the total mass M . Similar formulas can
be written for the y - and z -components.

Now, when we take the limit ∆mi → 0 , the sum in the numerator will become
an integral. Therefore, the integral expressions of all three components can be
written as follows:

Figure 6.10: The dm mass
element for continuously dis-
tributed mass.

xcm =

∫
x dm

M
, ycm =

∫
y dm

M
, zcm =

∫
z dm

M
(6.22)

In these integrals, mass should be expressed as dm = ρ(r) dr in terms of a density
that depends on position. The details will be clear in the worked examples below.

Example 6.11

Determine the center of mass of the 3-mass system whose
masses and positions on the xy plane are given in the �gure.

Answer
We write Eqs. (6.20), which we found for the coordinates of
the center of mass, for the x - and y -components and calcu-
late as follows:

xcm =

∑
i mixi∑

i mi
=

1 × 1 + 4 × 3 + 5 × 0
1 + 4 + 5

= 1.3 m

ycm =

∑
i miyi∑

i mi
=

1 × 0 + 4 × 1 + 5 × 2
10

= 1.4 m

The position of the center of mass is indicated on the
�gure below.

Example 6.12

Find the center of mass of a plate shaped like the letter L with
dimensions shown in the �gure and with homogeneous density.

Answer Let us �rst separate the plate into two simpler pieces,
as shown in the �gure. The mass of each plate will be propor-
tional to its surface area, because the same density coe�cients
will cancel each other out in the numerator and denominator.
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The centers of mass of these pieces will be their symmetry
center points, because their densities are homogeneous.
Accordingly, the coordinates of the center of mass are calcu-
lated as follows:

xcm =
m1x1 + m2x2

m1 + m2
=

4 × 0.5 + 2 × 2
4 + 2

= 1 units

ycm =
m1y1 + m2y2

m1 + m2
=

4 × 2 + 2 × 0.5
6

= 1.5 units

Example 6.13

Use the integration method to calculate the coordinates of the
center of mass of a plate shaped like a right triangle, in which
the perpendicular sides have the lengths a, b and the density
is homogeneous.

Answer
Since the plate is homogeneous, its mass is proportional to
its surface area. Let us choose the axes as shown in the �gure

and consider a thin piece with thickness dx between x and
x + dx along the x -axis. The area of this piece is y dx and
its center of mass will be its own x coordinate.

The equation for a line passing through the origin with a
slope of (b/a) is y = (b/a) x . Accordingly, Eq. (6.22) can be
written as:

xcm =
1
M

∫
x dm =

1
ab/2

∫ a

0

x (y dx)

=
2

ab

∫ a

0

x (b/a)x dx =
2
a2

∫ a

0

x2 dx =
2
a2

∣∣∣∣∣∣ x3

3

∣∣∣∣∣∣a
0

xcm = 2
3 a

Using a similar calculation, we �nd that ycm = 1
3 b .

Dynamics of the Center of Mass
Consider a system consisting of two particles. In Chapter 4, we learned that

forces acting on interacting masses could be separated into two groups: The
external forces and the internal forces that they exert on each other. Accordingly,
let us use ~F

ext
1 to show the external force exerted on m1 and ~F21 for the force

exerted by the second mass. When writing Newton’s law separately for each
particle, let us write accelerations as the second derivative of position:

for m1 : ~F
ext
1 + ~F21 = m1~a1 =

d2

dt2 (m1~r1)

for m2 : ~F
ext
2 + ~F12 = m2~a2 =

d2

dt2 (m2~r2)

Adding these two equations, we get:

(~F ext
1 + ~F

ext
2

)
+

(~F21 + ~F12
)

=
d2

dt2 (m1~r1 + m2~r2)

According to the third law, the action and reaction forces between the masses will
be equal and opposite, ~F21 = −~F12 . Hence, the content of the second brackets on
the left side is zero. Dividing and multiplying with the same total mass M , we
obtain: (~F ext

1 + ~F
ext
2

)
= M

d2

dt2

(m1~r1 + m2~r2

M

)
= M

d2~rcm

dt2

The second derivative on the right-hand side of the equation is just the accelera-
Figure 6.11: The center of mass
of your body moves up and
down as you walk, and you thus
perform work against gravity.
You will get less tired if you take
smaller steps.

tion ~acm of the center of mass. Consequently, we obtain Newton’s law, which
determines the motion of the center of mass:∑

i

~F
ext
i = M ~acm (motion of center of mass) (6.23)
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This result is important: In many-particle systems, there is one point that moves
with the resultant force of external forces, such that it obeys Newton’s law as if the
whole mass was concentrated at one point. The expression (6.23) is actually the
real de�nition of the center of mass.

Figure 6.12: The arms and legs
of this boy jumping into the
sea can follow many di�erent
paths, but he will always have a
point that moves as if the whole
mass was centered at that point.
That point is the center of mass.
Note that the center of mass of
the boy, which is around his
belly, draws a perfect parabola.
(Photo: Erik Forsberg).

6.6 ROCKET MOTION

Airplanes �y by using the pressure di�erences of the air. For this reason, for
many years, it was believed that it would be impossible to build crafts capable of
�ying in outer space, because there is no air to push. However, today, we have
rockets that can �y in space using the principle of conservation of momentum
and the reaction force of Newton’s third law. A rocket moves with the forward
momentum that it gains by ejecting its fuel backwards.

Let us examine the motion of the rocket with respect to an observer on the
ground (Figure 6.13). In a gravity-free environment, let the total mass of the
rocket and its fuel be m and velocity v in the positive direction at a given initial
time t . Let a small mass ∆m be ejected backwards as fuel during a time interval
∆t with a speed vexh with respect to the rocket.

Let the mass of the rocket be m − ∆m and its velocity v + ∆v at a later time
t + ∆t . We write the conservation of momentum for the (rocket+fuel) system:

Figure 6.13: Initial and �nal ve-
locities of the rocket-fuel system.

mv = (m − ∆m)(v + ∆v) + ∆m(v − vexh)

Notice that we have written the velocity of the fuel with respect to the ground as
(v − vexh ). Simplifying and neglecting the very small term ∆m ∆v , we �nd:

vexh ∆m = m ∆v (6.24)



108 6. IMPULSE AND MOMENTUM

We divide by ∆t in order to form derivatives:

vexh
∆m
∆t︸   ︷︷   ︸

Fthr

= m
∆v

∆t

The term on the left-hand side has the dimensions of a force and it is called the
thrust of the fuel. And, in the limit ∆t → 0 , the derivative on the right-hand
side gives the acceleration of the rocket. In conclusion, we have Newton’s law
for rocket motion:

Fthr = vexh
∆m
∆t

= ma (rocket motion) (6.25)

The ratio ∆m/∆t in the expression of the thrust on the right-hand side is the
mass of fuel exhausted per unit time. We can see that, the higher the exhaust
speed of the fuel, the higher the thrust will be.

During launch from Earth’s surface, the weight −mg should also be added to
the left-hand side of this expression, in other words, the thrust should be greater
than the weight: Fthr − mg > 0 .

We now want to calculate the rocket speed as a function of its mass. Let us
return to the expression (6.24):

vexh ∆m = m ∆v

Here, ∆m was the positive change in exhausted fuel mass. If we want to write the
change in the rocket’s mass, it will be just the opposite of this quantity. Hence, by
taking −∆m and dividing by m , we can write the equation governing the change
in rocket mass:

vexh
(−∆m)

m
= ∆v

Let the rocket’s initial mass be m0 and its initial velocity v0 , and let them reach
the �nal values m and v . Taking the limits (∆m, ∆v)→ (dm, dv) and integrating
both sides, we get:

−vexh

∫ m

m0

dm
m

=

∫ v

v0

dv

−vexh ln
m
m0

= v − v0

Hence, the �nal velocity of the rocket in terms of mass loss is:

v = v0 + vexh ln
m0

m
(6.26)

where the property ln(a/b)=− ln(b/a) of the logarithm was used to remove the
negative sign and to obtain a positive logarithm.
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Example 6.14

A rocket traveling in space at a constant speed of 80 m/s ejects
an amount of fuel backwards with a ratio of 1/20 to its own
mass at a speed of 200 m/s with respect to the rocket. What
will the �nal velocity of the rocket be?

Answer
As the mass loss m0/m is given, the velocity is calculated

using the formula (6.26):

v = v0 + vexh ln
m0

m
Here, we have m0/m = 20/19 . Also, the numerical values of
vexh and v0 are given in accordance with the de�nitions in
the formula. From here, we can �nd the �nal velocity:

v = 80 + 200 × ln(20/19) = 80 + 200 × 0.51 = 90 m/s

Example 6.15

A rocket with a mass of 1000 kg is ejecting fuel at a rate of
10 kg per second and with a speed of 1200 m/s during its
launch from the surface of the earth. (a) What is the thrust? (b)
What is the initial acceleration?

Answer
(a) We use Eq. (6.25) for the thrust:

Fthr = vexh
∆m
∆t

We substitute the given ratio ∆m/∆t = 10 and the exhaust

velocity, to �nd that
Fexh = 1200 × 10 = 12000 N

(b) In addition to thrust, there is now the weight of the rocket
opposing motion. We write the second law for the net force
acting on the rocket:

Fexh − mg = ma → a =
Fexh − mg

m

a =
12000 − 10000

1000
= 2 m/s2

This is only the initial acceleration; it will change later as the
mass changes.

Multiple-choice Questions

1. Which quantity is preserved during all types of colli-
sions?

(a) Potential energy.
(b) Kinetic energy.
(c) Momentum magnitude.
(d) Momentum vector.

2. Which is incorrect?
(a) Momentum is zero if the kinetic energy is zero.
(b) Momentum is zero if the velocity is zero.
(c) Momentum is zero if the potential energy is zero.
(d) Momentum is constant if the net force is zero.

3. Two objects with equal masses of m collide with equal
and opposite velocities v . What is the total momentum
of the system?

(a) 0 (b) mv (c) 2mv (d) −mv

4. A particle’s speed is doubled and its mass is tripled. By
what factor will its momentum increase?

(a) 2 (b) 6 (c) 12 (d) 18

5. Which is correct for two objects?
(a) If their momentum is equal, their kinetic energies
are also equal.
(b) If their momentums are equal, their velocities are
also equal.
(c) If their momentums are equal, they will move in the
same directions.
(d) If their momentums are equal, their masses are also
equal.

6. Which is correct for an elastic collision?
(a) Only momentum is conserved.
(b) Only kinetic energy is conserved.
(c) Both momentum and kinetic energy are conserved.
(d) None of the above.

7. A block with a velocity of 3 m/s elastically collides with
another block with equal mass at rest. What will be the
�nal velocity of the incoming block?
(a) 0 (b) −3 m/s (c) +3 m/s (d) 6 m/s

8. Which one of the following is the expression of kinetic
energy in terms of momentum?

(a) K = p2/2
(b) K = p2/2m
(c) K = 2mp2

(d) K = 2p2

9. A boy with mass 2m standing on a frictionless horizon-
tal plane throws a package of mass m with a velocity
v in the +x direction. What will be the velocity of the
boy?

(a) 0 (b) −v (c) −2v (d) −v/2

10. Which of the following is correct if two masses collide
and stick to each other?

(a) Momentum is conserved.
(b) Kinetic energy is conserved.
(c) Both momentum and kinetic energy are conserved.
(d) Potential energy is conserved.
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11. An object at rest gains a velocity v under the action of
a force F that lasts t seconds. How much velocity will
the object gain by a force 3F acting for 3t seconds?

(a) v (b) 3v (c) 9v (d) v/3

12. A spring is placed between two blocks with unequal
masses and compressed. What will happen when the
blocks are released?

(a) They will move away with equal and opposite ve-
locities.
(b) The one with the larger mass will also have higher
velocity.
(c) The one with the lower mass will have lower veloc-
ity.
(d) The one with the lower mass will have higher ve-
locity.

13. A spring is placed between blocks with unequal masses
and compressed. Which one will be true after the blocks
are released?

(a) The kinetic energies of the blocks will be equal.
(b) Their momentums will be equal and opposite.
(c) The one with the higher mass will have higher mo-
mentum.
(d) The one with the lower mass will have higher mo-
mentum.

14. A car and a truck moving towards each other at the same
speed collide and stick together. Which of the following
is correct?

(a) The force on the car is greater.
(b) The force on the truck is greater.
(c) The car will receive the kinetic energy lost by the
truck.
(d) The automobile will receive the momentum lost by
the truck.

15. Which of the following is incorrect if the total momen-
tum of a system is zero?

(a) Its kinetic energy will also be zero.
(b) Its center of mass will be at rest.
(c) The net force acting on the system is zero.
(d) All of the above.

16. Which of the following is correct if the net force acting
on an object is zero?

(a) The impulse is zero.
(b) The momentum will remain constant.
(c) Its center of mass will be in uniform linear motion.
(d) All of the above.

17. If the position of mass m is x1 = 0 and the position of
mass 2m is x2 = 6 , then what will the position of the
center of mass xcm be?

(a) 2 (b) 2.5 (c) 3 (d) 4

18. Two equal masses are at positions x1 and x2 . What will
the coordinate of the center of mass be?

(a) x2 − x1
(b) x1 + x2
(c) (x1 + x2)/2
(d) (x2 − x1)/2

19. Which of the following is correct when a ri�e is �red?
(a) The momentum of the ri�e is greater.
(b) The momentums of the ri�e and the bullet are equal
and opposite.
(c) The kinetic energies of the ri�e and bullet are equal.
(d) The kinetic energy of the ri�e is greater than that
of the bullet.

20. A spring is placed between two blocks at rest and com-
pressed. What will happen when the blocks are released?

(a) The center of mass will travel at constant velocity.
(b) The center of mass will move towards the heavier
block.
(c) The center of mass will move towards the lighter
block.
(d) The center of mass will remain at rest.

Problems

6.1 Impulse and Momentum

6.1 A football player hits a ball of mass 400 g with an incom-
ing speed of 30 m/s and sends it back in the same direction at
a speed of 40 m/s . Since the contact of the ball with his foot
took 0.04 s , what will the average force be on the football
player’s foot? [A: 700 N .]

Problem 6.2

6.2 A football player hits a ball of mass 400 g coming from
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the right corner with a speed of 30 m/s and sends it towards
the goal perpendicular to its incoming direction at a speed of
40 m/s . Since the contact of the ball with his foot took 0.05 s ,
�nd the average force acting on the ball and its direction.

[A: 400 N and 53◦ with the corner.]

6.3 A ball with a mass of 0.5 kg is dropped from a height
of h1=5 m . The ball bounces back to a height of h2 = 3.2 m
after hitting the ground. What is the impulse given to the ball
during the collision with the ground? [A: J = 9 kg·m/s .]

6.2-3 Conservation of Momentum-Collisions in
One Dimension

6.4 A block with a mass of 1 kg traveling at a speed of 10 m/s
on a frictionless horizontal road collides into another block
with a mass of 4 kg that is at rest. If the collision is elastic,
�nd the �nal velocities of the blocks. [A: −6, +4 m/s .]

6.5 A block with a mass of 2 kg traveling at a speed of 8 m/s
on a frictionless horizontal road collides into another block
with a mass of 3 kg that is coming from the opposite direc-
tion with a speed of 6 m/s . After collision the blocks stick
together. Find the velocity of the blocks after the collision.

[A: −0.4 m/s .]

Problem 6.6
6.6 A wooden block with a mass of 950 g is attached to the
free end of a spring with a spring constant of k = 100 N/m
on a frictionless horizontal plane. The spring is initially at
normal length. A bullet with a mass of 50 g and a speed v hits
the block and is embedded in it. If the spring is compressed
by 30 cm , what was the initial velocity of the bullet?

[A: 60 m/s .]

6.7 A block with a mass of 1 kg traveling at a speed of 30 m/s
on a frictionless horizontal road collides with another block
with a mass of 4 kg incoming from the opposite direction.
Both blocks stay at rest after the collision. What was the
initial velocity of the second block? [A: 7.5 m/s .]

Problem 6.8
6.8 A bullet with a mass of m = 50 g is �red horizontally
towards a wooden block with a mass of M = 950 g that is at
rest near the edge of a tabletop 80 cm in height. The bullet is
embedded in the block. The (block+bullet) system falls to the

ground at a horizontal distance of 3 m from the edge. Find
the initial velocity of the bullet. [A: 150 m/s .]

Problem 6.9
6.9 A spring with a constant of k=100 N/m is attached to
the back of a block with a mass of 2 kg traveling at a speed
of 3 m/s on a frictionless horizontal plane. Another block
with a mass of 1 kg comes with a speed of 6 m/s and collides
with the spring. What will the maximum compression of the
spring be and what will the velocities of the blocks be at that
instant? [A: 24 cm and 4 m/s .]

Problem 6.10
6.10 A bullet with a mass of m=50 g travels at a speed v
and hits a block with a mass of M=950 g tied to the end of
a rope of length L = 2 m . The bullet is embedded in the
block. What should the initial velocity v of the bullet be such
that the (bullet+block) system will make one complete loop
without the rope becoming slack at point B? [A: 200 m/s .]

Problem 6.11
6.11 A ball with mass m1=3 kg released from rest from point
A at a height of 3.2 m travels along the frictionless path ABC ,
collides with and sticks to another ball with mass m2=1 kg
standing at rest at point B. After the collision, the (m1 + m2)
system climbs up to point C at a height of 1 m and compresses
the spring with a constant of k=400 N/m , �xed to the plane.
Calculate (a) the velocity right after collision, (b) the velocity
at point C and (c) the amount of compression of the spring.
[A: (a) 6 m/s , (b) 4 m/s , (c) 40 cm .]

Problem 6.12
6.12 Blocks with masses M1=5 kg and M2=0.95 kg are at
rest on a frictionless horizontal surface. A bullet with mass
m=50 g �red at a speed of v=400 m/s passes through the �rst
block and embeds in the second block. After the collision, the
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velocity of the �rst block is measured to be 3 m/s . Find the
velocity of the second block. [A: 5 m/s .]

Problem 6.13
6.13 Two balls with masses m1=3 kg and m2=2 kg are hang-
ing side by side on the ends of two strings of equal lengths L
to form two pendulums side by side. The �rst ball is pulled
aside and released at an angle of 53◦ from the vertical. If the
balls collide elastically, what will be the maximum angle that
the second ball makes with the vertical? [A: 65◦ .]

6.4 Collisions in Two Dimensions

Problem 6.14
6.14 A ball with m1=1 kg travels on a frictionless horizon-
tal plane at velocity v0=10 m/s and collides with another
ball with mass m2=2 kg at rest. After the collision, the balls
scatter, m1 at an angle of 60◦ and m2 at an angle of −37◦ .
Calculate the �nal velocities of the balls.

[A: v1 = 6.0, v2 = 4.4 m/s .]

Problem 6.15
6.15 A car with a mass of 800 kg traveling East and a pickup
truck with a mass of 1200 kg traveling North collide at a
junction and stick to each other. According to the tire tracks
on the road, the vehicles had drifted o� by 9 m in a direction
that makes an angle of 37◦ Given that the coe�cient of fric-
tion of the tarmac road is µ=0.8 , determine the velocities of
both vehicles before the collision.

[A: Car: 24 m/s , pickup truck: 12 m/s .]

Problem 6.16
6.16 A ball with mass m1=1 kg is traveling in the +x direc-
tion at a velocity of v1=10 m/s . It collides with another ball
with a mass of m2=2 kg incoming with a velocity of v2=5 m/s
that makes an angle of −53◦ with the x axis. After the col-
lision, m1 is scattered at a velocity of 15 m/s in a direction
that makes an angle of +45◦ with the x -axis. Calculate the
velocity components of m2 . [A: 2.7, −1.3 m/s .]

6.5 Center of Mass

Problem 6.17
6.17 In a sulfur dioxide (S O2 ) molecule, the S-O bonds have
a length of 0.14 nm and the angle between them is 120◦ .
Since the mass of sulfur is approximately twice that of oxy-
gen, �nd the distance of the center of mass of this molecule
to the S atom. [A: ycm = 0.035 nm .]

Problem 6.18
6.18 Find the center of mass of a T shaped homogeneous
plate with the dimensions given in the �gure above.

[A: ycm = 2.6 ]

6.6 Rocket Motion

6.19 A rocket in uniform linear motion in outer space with
a constant speed of 120 m/s �res its engine and ejects an
amount of fuel backwards at a ratio of 1/30 to its own mass
at a speed of 300 m/s with respect to the rocket. What will
the �nal velocity of the rocket be? [A: 130 m/s .]

6.20 A rocket with mass 800 kg is ejecting fuel at an amount
of 500 kg per minute at a speed of 1500 m/s during its launch
from the surface of the earth. (a) What is the thrust? (b) What
is the initial acceleration? [A: (a) 12500 N , (b) 5.6 m/s2 .]
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Night sky in a time-lapse pic-
ture. The Earth rotates around
its own axis, and we perceive it
as the rotational motion of the
stars.
Although each of these stars
seems to have a di�erent rota-
tion velocity, there is one quan-
tity that is common for all. In
this chapter, we will learn what
it is.

Up until now, we have considered an object as having a speed and acceleration
as a whole. Now, consider the rotating wheel of a car. Each point of this wheel
rotates at a di�erent speed and acceleration. Therefore, we cannot examine the
rotation of extended objects using the methods that we have learned so far.

In previous chapters, we have made calculations based on the assumption
that all forces on an object acted on a single point. This is called a pointlike object.
Although we drew objects such as cars, blocks and spheres, we always examined
them as pointlike objects. However, there are extended objects in real life; they
have volumes, and forces act on di�erent parts of them. In this chapter, we will
take this property of rigid bodies into consideration.

A body that takes up volume in space and does not change its shape is called
a rigid body. (They are also called solid bodies.) Wheels, doors, automobiles, the
Earth, the Moon, etc., are all examples of rigid bodies.

The motion of a rigid body is much richer than that of a pointlike object. Let
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us consider the kinds of motions that rigid bodies can perform:

Figure 7.1: The most general
motion of an object: Translation,
rotation and vibration.

1. The motion of the rigid body’s center of mass is called the translational
motion. Both ends of a baton thrown up in the air by a majorette can rise by
rotating, but the center of mass of the stick travels on a parabolic trajectory,
just like a pointlike stone.

2. Even if its center of mass remains at rest, a rigid body can perform rotational
motion by rotating around its own center of mass. Let us apply a force ~F
perpendicular to one end of a ruler stick and a force −~F to the other end
(Figure 7.2). As the net force acting on the object is zero, according to the
�rst law, its center of mass will either remain at rest or perform uniform
linear motion. However, there is nothing preventing the stick from rotating
around its own center of mass.

Figure 7.2: The net force acting
on this ruler stick is zero. But
it is not in equilibrium and will
perform rotational motion.

3. Bodies can also perform vibrational motion. If we push two masses con-
nected by a string towards the center, the object will vibrate, even though the
center of mass remains at rest. However, vibrational motion is not included
in the de�nition of a rigid body, because the body changes shape and will be
examined separately later in Chapter 9.

In Chapter 6, we saw that the center of mass moved as if all of the external
forces were acting at the center of mass. Hence, the translational motion of the
rigid body is the motion of its center of mass. It will thus be su�cient to examine
the rotational motion of rigid bodies here.

7.1 ANGULAR KINEMATICS

The rotational motion of rigid bodies may seem complex at �rst. Each point
of the body has a di�erent position, velocity and acceleration, and you may guess
the mathematical di�culty of examining all of these together.

However, we notice something here: Although each point of a wheel rotates
at a di�erent velocity, when the wheel makes one full revolution, each point will
have made the same revolution. If one point rotates by a certain angle, all points
will rotate by that angle. Therefore, rigid bodies should naturally be analyzed
using angular coordinates. The topic that deals with concepts of angular velocity
and angular acceleration is called angular kinematics.
Angular Position (θ)

Let us consider a point P rotating on a circular trajectory with radius r . Let
us choose a reference line from which the angles are measured. If a point P
travels some length of arc s from the reference line, the subtended angle,

θ =
s
r

(angular position) (7.1)

is called the angular position of P (Figure 7.3). According to the most commonly
Figure 7.3: Angular position θ . accepted convention, counterclockwise angles are taken as positive, and clockwise

as negative.
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The unit of angle is the radian in angular kinematics. Using other units, like
degrees ( ◦ ) or grades, will give incorrect results. The formula θ=s/r actually
indicates that the radian is the natural unit of angle. Indeed, if we substitute
the circumference of a circle as s=2πr , we get the angle 2π radians. Therefore,
angles should be taken as radians in angular kinematics calculations. Remember
the following rule for converting degrees into radians:

1 revolution = 360◦ = 2π radians

Accordingly, 180◦=π radians , 60◦=π/3 radians , 45◦=π/4 radians , etc.
Angular Velocity (ω)

Let us again consider a point P rotating on a circle with radius r . If the
angular position of this point at t1 is θ1 , and at a later time t2 is θ2 , the ratio

ωav =
θ2 − θ1

t2 − t1
=

∆θ

∆t
(7.2)

is the average angular velocity during this time interval.
Figure 7.4:The unit for angular velocity is radians/second (rad/s). Another unit that is

used in industry is revolutions per minute (rpm):

1 rpm =
1 revolution

minute
=

2π rad
60 s

≈ 0.10 rad/s

As in linear motion, instantaneous angular velocity is de�ned by taking
the derivative at the limit ∆t → 0 :

ω = lim
∆t→0

∆θ

∆t
=

dθ
dt

(angular velocity) (7.3)

Angular Acceleration (α)
Angular acceleration is de�ned as the change of angular velocity in unit time

and the ratio
αav =

ω2 − ω1

t2 − t1
=

∆ω

∆t
(7.4)

is the average angular acceleration during this time interval.
The ∆t → 0 limit of average acceleration is instantaneous angular accel-

eration:
α = lim

∆t→0

∆ω

∆t
=

dω
dt

(angular acceleration) (7.5)

The unit of angular acceleration is rad/s2 . Acceleration is positive if the object
gets faster as it rotates in the counterclockwise direction and negative if it gets
slower.

Let us emphasize once more: Angular velocity and angular acceleration have
the same value at all points of the rigid body.

Motion With Constant Angular Acceleration
The angular acceleration α of a rigid body is constant if its angular velocity

changes uniformly. In such a case, we get formulas for angular position and
angular velocity, just as we did for linear motion in Chapter 2. There is no need to
repeat this calculation. The results are displayed in the following table, together
with the linear motion formulas:
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Circular and linear motions with constant acceleration

Circular Linear

ω = ω0 + αt v = v0 + at

θ = θ0 + ω0t + 1
2αt2 x = x0 + v0t + 1

2 at2

ω2 − ω2
0 = 2α(θ − θ0) v2 − v2

0 = 2a(x − x0)

Example 7.1

A wheel at rest starts to rotate with constant angular accelera-
tion and reaches an angular velocity of 90 rpm after 10 s .
(a) What is the angular acceleration of the wheel?
(b) Howmany revolutions has it performed during this period?

Answer
(a) We use the velocity formula for constant acceleration:

ω = ω0 + α t
The radian unit must be used in all calculations. The initial
velocity is zero: ω0 = 0 . Let us substitute the �nal velocity

with correct units rad/s :
90 ×

2π rad
60 s

= 0 + α × 10 → α = 0.3π rad/s2

(b) We use the angular position formula:
θ = θ0 + ω0t + 1

2αt2

Here, we take the point θ0 = 0 of the wheel:
θ = 0 + 0 + 1

2 × 0.3π × 102 = 15π radians
The angle is requested in terms of revolutions. One revolution
is taken as 2π :

θ = 15π radians =
15π
2π

= 7.5 revolutions .

Example 7.2

An electrical motor rotating with an angular velocity of
600 rpm starts to decelerate when the power is disconnected
and its angular velocity decreases to 150 rpm in 3 s .
(a) What is the angular acceleration?
(b) How many revolutions will it perform during this time

interval?
(c) How many revolutions will it perform from the start until

it stops?

Answer
(a) We substitute the given velocities in the angular velocity
formula in terms of rad/s and �nd the angular acceleration:

α =
ω − ω0

t
=

(150 − 600) × π/30
3

α = −5π rad/s2

(b) We use the angular position formula:

θ = θ0 + ω0t + 1
2αt2 = 0 +

600 × π
30

× 3 + 1
2 × (−5π) × 32

θ = 37.5π radians = 18.8 revolutions .
(c) The �nal velocity is zero when the motor stops. We use
the velocity formula without time:

ω2 − ω2
0 = 2αθ → θ =

ω2 − ω2
0

2α

θ =
0 − (600π/30)2

2 × (−5π)
= 40π radians = 20 revolutions

Relation Between Angular and Linear Kinematics
When a rigid body performs rotational motion, any point on it makes a

circular motion with a certain radius. That point has some well-de�ned linear
speed, tangential and centripetal accelerations. It is important to know how these
quantities are related to angular velocity and acceleration.

Let us rewrite Eq.(7.1) which gives us the relation between angular and linear
positions:

s = r θ

As the angle θ changes over time, so will the arc s . Taking the derivative of both
sides with respect to time t , we �nd that

Figure 7.5: Angular and linear
coordinates. ds

dt
=

d(rθ)
dt

= r
dθ
dt
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where the constant radius r was moved outside of the derivative. The derivative
on the right-hand side is the angular velocity ω and the derivative on the left-hand
side is just the linear velocity v of point P :

v = rω (7.6)

Acceleration has two components in circular motion (Figure 7.6). Let us
remember the formula for the centripetal acceleration:

ar =
v2

r

Substituting the expression v = rω that we found above for linear velocity, we
can write centripetal acceleration in terms of ω :

Figure 7.6: Tangential and cen-
tripetal accelerations.ar =

(rω)2

r
= rω2 (7.7)

For tangential acceleration, let us rewrite the expression (3.19) that we
found in Chapter 3:

at =
dv
dt

If we substitute the expression v = rω that we found for linear velocity and take
the derivative, as the radius r is constant, we get

at = r
dω
dt

= r α (7.8)

These formulas completely establish the relation between the rotational mo-
tion of the solid body and the linear motion of any point on it. Let us summarize
these formulas in a table:

The relation between angular and linear kinematics

Angular Linear

Position θ s = r θ

Velocity ω v = rω

Acceleration α

 ar = rω2 (centripetal acceleration)
at = r α (tangential acceleration)

Example 7.3

A wheel starts from rest and accelerates at a constant rate to
reach a velocity of 60 rpm after 5 revolutions .
(a) What is the angular acceleration of the wheel?
(b) What are the linear velocity and tangential and centripetal

accelerations of a point located at a distance of 2 m from
the center of the wheel?

Answer (a) The angular velocity of the wheel is 60 rpm=60×

π/30=2π . We �nd angular acceleration using the velocity
formula without time: ω2 − ω2

0 = 2α(θ − θ0)

α =
ω2 − 0

2(θ − 0)
=

(2π)2

2 × 5π
= 0.4π rad/s2

It is a good practice to leave π in angular calculations.
They are either canceled out later or the value π2 ≈ 10 can
be substituted.
(b) We use the formulas for conversion to linear kinematics
for r = 2 m :
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Linear velocity: v = rω = 2 × 2π = 4πm/s
Tangential acceleration: at = r α = 2 × 0.4π = 0.8πm/s2

Centripetal acceleration: ar=rω2=2×(2π)2=8π2≈80 m/s2 .

Example 7.4

On a bicycle the crankset (toothed disk) �xed to the pedal has
a radius of 10 cm and the sprocket (smaller toothed disk) at
the center of the rear wheel has a radius of 5 cm . The two are
connected by a chain.
(a) If the angular velocity of the crankset is ω1=40 rpm and

its angular acceleration is α1=7 rad/s2 , what will be the
angular velocity and angular acceleration of the rear
wheel?

(b) Calculate the centripetal accelerations of points on the rim
of the crankset and of the sprocket.

Answer
(a) The chain is the connection between the two wheels. All
of the points on this chain have equal linear speed and accel-

eration. In particular, the linear speeds of points on the rim
of both disks must be equal:

v = v1 = v2

We use the relation v = rω for each wheel:
r1ω1 = r2ω2 → ω2 =

r1

r2
ω1

There is no need to change units here, because we are working
with ratios:

ω2 =
10 cm
5 cm

× 40 rpm = 80 rpm

Now, in addition to linear velocities, the linear acceleration
of the chain is also the same everywhere. In particular, at the
points on the rim, they become the tangential acceleration
for each circular motion:

a = a1t = a2t

Using the relation at=rα that connects the tangential and
angular acceleration for each wheel,

α2 =
r1

r2
α1 =

10 cm
5 cm

× 7 rad/s2 = 14 rad/s2

(b) The formula ar = rω2 giving the centripetal acceleration
is used for both disks:

a1r = r1ω
2
1 = 0.10 × (40 × π/30)2 = 1.8 m/s2

a2r = r2ω
2
2 = 0.05 × (80 × π/30)2 = 3.6 m/s2

7.2 TORQUE (MOMENT OF A FORCE)

How do we open a door? The door will open (Figure 7.7) if we push or pull
with a perpendicular force ( F1 ) from the free side of the door. However, it will
be di�cult to open it if we apply the same force on a point near the hinges ( F2 ).
Likewise, it will not move if we pull with a force along the door ( F3 ). The ability

Figure 7.7: Which of these
forces will rotate the door more
easily?

of the same force to rotate an object is di�erent in all of these cases.
The ability of a force to rotate an object is called its torque (or, its moment).

We shall introduce the torque in a simple way, then generalize.
De�nition: Let ~F be a force acting at a position ~r (Figure 7.8). The magnitude

of the torque about the origin O is,

τ = F r sin θ (7.9)

where θ is the angle between ~F and ~r .
The sign of the torque depends on the direction of rotation. According to the

most commonly accepted convention, the torque is positive if the force is trying
to rotate the stick r in a counterclockwise direction. The torque is negative if the
force is trying to rotate in a clockwise direction.

Figure 7.8: The torque of a
force.

The unit of torque is newton × meters (N·m) and does not have a special
name.

We can write the de�nition above in two di�erent ways: In the �rst, the factor
F sin θ is the component F⊥ that is perpendicular to the direction r of the force
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(Figure 7.9a):
τ = F sin θ︸ ︷︷ ︸

F⊥

r = F⊥ r (7.10)

Figure 7.9: Two methods of cal-
culating torque.

On the other hand, considering that the product r sin θ is just the opposite
perpendicular side of the triangle (Figure 7.9b), we can write

τ = F r sin θ︸︷︷︸
d

= F d (7.11)

The distance d here is called the lever arm. Whichever expression is suitable
for the problem at hand should be used. Usually, the expression F⊥r is more
practical.
Expression of Torque As a Vector Product

The factor sin θ in the de�ning expression (7.9) of the torque suggests that it
can be expressed as a vector product. Indeed, if the position vector ~r is measured
from the rotation axis to the application point of the force ~F , the torque vector
can be expressed as follows:

~τ = ~r × ~F (7.12)

Figure 7.10 shows that this expression satis�es the de�nition given above: Let
Figure 7.10: Expression of
torque as vector product.

us assume that the vectors ~r and ~F are on the xy -plane. The direction of the
vector product is found using the right-hand rule. According to this de�nition,
the direction of the torque vector will be along z , which is the rotation axis. If
the rotation of the force about the z -axis is counterclockwise, then the torque
will be in the +z direction, in other words, positive. If it rotates in the opposite
direction, the torque will be negative.

As the forces that we will take into consideration in this chapter are all on
a plane, the torques will always be along the z -axis, with positive or negative
components. We can thus work without referring to the vector nature of torque.

Example 7.5

All of the forces shown in the �gure have the same magnitude
of 10 N . Calculate the torques of these forces with respect to
the point O.

Answer We use one of the expressions τ=rF⊥ or τ=F d for
torque:

τ1 = r F1⊥ = 0 , because the component of the force perpen-
dicular to r is zero. Torque is always zero if the line of the
force passes through the center of rotation.
τ2 = r F2⊥ = 2 × 10 = +20 N·m . Torque is positive, because
the direction of rotation of the force F2 is counterclockwise.
τ3 = −rF3⊥ = −1 × 10 = −10 N·m . Torque is negative,
because the direction of rotation of the force F3 is clockwise.
τ4 = F4 d = 0 . Torque is zero, because the lever arm d=0 .
τ5 = −rF5 sin 37◦ = −1 × 10 × 0.6 = −6 N·m . Torque is
negative, because the direction of rotation of the force F5 is
clockwise.
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7.3 ROTATIONAL DYNAMICS

Rotational Dynamics of a Pointlike Object
Before expressing Newton’s law for a rigid body, let us �rst demonstrate our

method on a simpler motion.
Let a pointlike mass m rotate on a circular trajectory with radius r and

with a net force ~F acting on it (Figure 7.11). Let us separate this force into two
components: The component Fr acts towards the center O, and thus causes the
centripetal acceleration ar . The other component Ft acts along the tangent and
thus causes the tangential acceleration at .

Let us write the Newton’s law for these two forces and convert linear acceler-
ations into angular quantities:

Figure 7.11: Tangential and ra-
dial components of forces acting
on a point body in circular mo-
tion.

Fr = mar = mrω2

Ft = mat = mr α

The �rst of these equations speci�es the centripetal force required to rotate the
object at the angular velocity ω . We set it aside to concentrate on the second
equation which gives the tangential acceleration. Let us write it as multiplied by
r :

Ftr = mr2 α

The left-hand side of the equation is the torque of the force F with respect to the
center O:

τ = (mr2)α (7.13)

This expression resembles the Newton law F=ma . However, force F is replaced
with the torque τ , acceleration a is replaced with angular acceleration α and the
mass is replaced with product (mr2) . This di�erent expression of Newton’s law
is actually nothing new. But it gives us a clue as to how to write the rotational
motion of the rigid body. The fact that all of the particles of the rigid body are
rotating with the same angular acceleration α is explicit in the right-hand side of
the equation.
Rotational Dynamics of a Rigid Body

Now, we can consider the dynamical law that determines the rotation of a
solid object. Let us assume that a rigid body rotating about an axis (Figure 7.12) is
made of N number of pointlike masses ∆m1,∆m2 . . .∆mN . Let the external forces
acting on each of these masses be ~F1, ~F2 . . . ~FN . (There is no need to consider the
internal forces because they will cancel each other out in the sum.)

For each small mass we write the equation (7.13) that we developed for a
pointlike object, to get a system of equations:

Figure 7.12: External forces act-
ing on a rigid body. τ1 = F1t r1 = (∆m1r2

1)α

τ2 = F2t r2 = (∆m2r2
2)α

· · · = · · ·

τN = FNt rN = (∆mNr2
N)α
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Adding these equations on each side, the angular acceleration α on the right-hand
side becomes the common factor:

τ1 + τ2 + · · · + τN =
(
∆m1r2

1 + ∆m2r2
2 + · · · + ∆mNr2

N
)
α∑

i

τi =
(∑

i

∆mir2
i

)
α

The left-hand side of this equation is the total torque of the forces acting on the
rigid body. The sum in the brackets on the right-hand side becomes a new term in
which each point mass is multiplied by the square of its own radius ri and added.
This is called the moment of inertia of the rigid body and is shown with I :

I =
∑

i

∆mir2
i (moment of inertia) (7.14)

Moment of inertia serves the function of mass in rotational motion; in other
words, the larger I is, the more di�cult it becomes to give angular acceleration
to the object.

As the distances ri in this de�nition vary depending on the chosen axis of
rotation, the moment of inertia will depend on the chosen axis of rotation.

For a continuously distributed mass, the sum is replaced by an integral in the
limit ∆mi → 0 :

I =

∫
dm r2 (moment of intertia) (7.15)

As a result, the equation for the rotational motion of a solid object is written as
follows:

τnet = I α (Rotational dynamics of a rigid body) (7.16)

We must emphasize one small point here: Previously, we had speci�ed the
positive direction of the torque as being counterclockwise. However, in calcula-
tions the positive direction of the torque can be chosen in the direction of motion,
and not the clock direction. In other words, the torques in the direction that
the rigid body is assumed to rotate are taken as positive and the torques in the
opposite direction are taken as negative.

Example 7.6

Awheel with radius R=2 m and mass M=5 kg can rotate with-
out friction about its center. Its moment of inertia is I= 1

2 MR2 .
(a) The wheel is pulled with a force F=10 N from the end of

a rope tied around it. Find the angular acceleration of the

wheel.
(b) A block with mass m=1 kg is attached at the end of the

rope and released. Calculate the accelerations and the
tension in the rope.

Answer
The reaction forces that may be generated on the axis of the
wheel are not taken into account, because their torques will
be zero as they pass through the axis of rotation. Accordingly,
only the torque of force F will cause motion. We write the
equation of rotational dynamics (7.16):

τnet = I α → F.R =
(

1
2 MR2

)
α
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α =
2F
MR

=
2 × 10
5 × 2

= 2 rad/s2

(b) This time, there are two moving objects: The rotating
wheel and the mass m in linear motion. The forces acting on
each one are shown below as free-body diagrams:

Taking the direction of motion as positive for both objects,
the equations of motion are as follows:

For M : τnet = TR = I α = 1
2 MR2 α (1)

For m : Fnet = mg − T = ma (2)
These are two equations with three unknowns T, α, a .

Therefore, an extra equation is required. This is obtained
from the relation between linear and angular kinematics.
Since each point of the rope will have the same acceleration
a , it will be the tangential acceleration of the wheel at the
point of contact with the wheel. Therefore, the third equation
is as follows:

a = at = Rα (3)
Taking the value T from equation (1) and using it with the
a = Rα in equation (2), we get

α =
mg

(m + M/2)
R =

10
(1 + 5/2) × 2

= 1.4 rad/s2

From here, we �nd the other unknowns:
a = Rα = 2.8 m/s2

T = m(g − a) = 7 N .

Example 7.7

A rod of length L = 5 m can rotate without friction around its
end O. The moment of inertia of the rod with respect to point
O is I0 = 5 kg·m2 . The two forces shown in the �gure are
acting on this rod. Find the direction of rotation and angular
acceleration of the rod.

Answer
The torques of the two forces are in di�erent directions. Let

us calculate their torques separately in order to determine
which is greater:

τ1 = F1 L = 6 × 5 = 30 N·m
τ2 = r F2⊥ = r F2 sin 37◦ = 2 × 15 × 0.6 = 18 N·m

The rod will rotate in the direction of F1 , because the value
τ1 is greater.
We choose the positive rotation direction for F1 and write
the rotational dynamics equation:

τnet = τ1 − τ2 = I0 α
From here, we �nd the angular acceleration:

α =
30 − 18

5
= 2.4 rad/s2

Example 7.8

A block of mass m1 = 1 kg is attached to one end of a rope
going around a pulley. Another block of mass m2 = 2 kg at rest
on a frictionless horizontal plane is tied to the other end of the
rope. The pulley has a mass m2 = 2 kg , a radius R = 20 cm
and a moment of inertia I = 3 kg·m2 . Calculate the linear and
angular accelerations and the tensions in the ropes.

Answer
The important point to note here is that the tensions on two
ends of the rope will be di�erent. For, if the tensions were
equal, there would be no net torque to rotate the pulley. The
forces acting on each object can thus be shown as follows:

We write the equations of motion for each object (the weight
of the mass on the plane and its reaction force N cancel each
other out and therefore are not taken into consideration.):

For m1 : m1g − T1 = m1a (1)
For m2 : T2 = m2a (2)
For the pulley: T1R − T2R = I α (3)

Additionally, we write the relation between the accelerations
as follows:

a = Rα (4)

We �nd the accelerations and tensions from these four equa-
tions. Taking the tensions from (1) and (2) and substituting
in equation (3), we get

α =
m1gR

I + (m1 + m2)R2 =
10 × 0.2

3 + 3 × 0.22 = 0.64 rad/s2

Using these, we calculate the other unknowns:

a = Rα = 0.2 × 0.64 = 0.13 m/s2

T1 = m1(g − a) = 9.9 N
T2 = m2a = 0.3 N .
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Example 7.9

A rope is wrapped around the smaller radius R1 = 10 cm
of a pulley with moment of inertia I = 3 kg·m2 and the other
end of the rope is tied to a block with mass m1 = 1 kg on a
frictionless inclined plane with 37◦ slope. A block with mass
m2 = 2 kg is tied to the end of a rope going around the outer
radius R2 = 20 cm of the pulley. Calculate the accelerations
and the tensions in the ropes when this system is released.

Answer
The linear accelerations of the blocks are di�erent in this
problem because they are tied at di�erent radii. Let us show
the forces acting on each object:

Since m2R2 > m1R1 , the direction of motion is obvious. We
take the direction of motion of each object as positive and
write the equations as follows:

For m1 : T1 − m1g sin 37◦ = m1a1 (1)
For m2 : m2g − T2 = m2a2 (2)
For the pulley: T2R2 − T1R1 = I α (3)

As the linear accelerations will again be the tangential accel-
eration of the pulley, we write the relations between linear
and angular accelerations:

a1 = R1 α (4)
a2 = R2 α (5)

We �nd the accelerations and tensions from these �ve equa-
tions. Taking T1 and T2 from (1) and (2) and substituting in
equation (3), we �nd the angular acceleration:

α =
m2gR2 − m1gR1 sin 37◦

I + m1R2
1 + m2R2

2

= 1.1 rad/s2

We then calculate the accelerations and tensions using this
value:

a1 = R1α = 0.1 × 1.1 = 0.11 m/s2

a2 = R2α = 0.22 m/s2

T1 = m1g sin 37◦ + m1a1 = 6.1 N
T2 = m2g − m2a2 = 19.6 N .

7.4 MOMENT OF INERTIA CALCULATIONS

The moment of inertia, behaving like a mass in rotational motion, depends
not only on the mass, but also on how the mass is distributed around the axis of
rotation.

Moment of inertia can be calculated using two methods:
• If the rigid body consists of pointlike objects, the moment of inertia of each

one is added using Eq. (7.14):

I =
∑

i

mir2
i

• If the distribution of mass is continuous, we take the integral Eq. (7.15):

I =

∫
dm r2

Let us summarize the results of the calculation before delving into moment
of inertia calculations:
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Moments of inertia of various rigid objects

Ring : I = MR2
Rod : I = 1

12 ML2

Disk or cylinder Rod : I = 1
3 ML2

I = 1
2 MR2

Rectangular plate Sphere : I = 2
5 MR2

I = 1
12 M(a2 + b2)

Parallel Axis Theorem
The value of moment of inertia depends on the chosen axis. The table above

gives the moments of inertia Icm of rigid bodies about an axis passing through
their centers of mass. If the rigid body rotates about another axis, the moment of
inertia can still be calculated using a result known as the parallel axis theorem
(or, Steiner theorem):

If the moment of inertia of an object is Icm with respect to an axis passing
through its center of mass, then its moment of inertia with respect to another axis

Figure 7.13: Parallel axis theo-
rem.

that is parallel at a distance d will be

I = Icm + M d2 (Parallel axis theorem) (7.17)

Here, M is the mass of the rigid body. We give this without a proof here. Accord-
ing to this theorem, considering that the term Md2 is positive, the axis where the
moment of inertia is the lowest, in other words, where it can rotate most easily,
is the axis passing through its center of mass.

Example 7.10

Calculate the moment of inertia of a system consisting of the

three masses shown in the �gure with respect to each of the x -,
y - and z -axes.

Answer The moment of inertia will be ∑
i mir2

i for point
masses. The mass m1 will have no contribution, because it is
on the axis, and therefore r1 = 0 .

We substitute the given values of m and ri :
Ix = m2r2

2 + m3r2
3 = 0 + 5 × 22 = 20 kg·m2

Iy = m2r2
2 + m3r2

3 = 3 × 42 + 0 = 48 kg·m2

Iz = m2r2
2 + m3r2

3 = 48 + 20 = 68 kg·m2
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Example 7.11

(a) Find the moment of inertia of a ring with mass m and
radius R about an axis passing through its center O and
perpendicular to the plane of the ring.

(b) Using the previous result, �nd the moment of inertia of a
disk with mass M and radius R about a perpendicular
axis passing through its center.

Answer
(a) We choose a small mass dm on the ring and use the integ-
ral formula (7.15):

I =

∫
dmR2 = R2

∫
dm = MR2

As each mass dm is located at a constant distance R , it is
taken outside the integral. The sum of dm is equal to the
total mass M .

(b) Let us consider a small ring between the radii r and r +dr
on the disk. Its surface area will be approximately 2πr dr . If
the total mass is M , we �nd the mass of this small disk using
proportion:

dm
M

=
2πr dr
πR2 → dm =

M
R2 2r dr

We had found in item (a) that the contribution of this small
disk is dm r2 . Therefore, their contributions are added, in
other words, integrated from r = 0 to r = R :

I =

∫
dm r2 =

∫ R

0

( M
R2 2r dr

)
r2 =

2M
R2

∫ R

0

r3 dr

The value of the integral is R4/4 , and after simpli�cation, we
�nd the moment of inertia of the disk:

I = 1
2 MR2

Example 7.12

A solid sphere with mass M and radius R is welded to the end
of a rod with mass m and length L . Calculate the moment of
inertia of this system with respect to the y -axis on the other
end.

Answer
The moments of inertia of the rod and sphere with respect to
their own centers of mass are given in the table on Page 124:
Rod: Icm =

1
12

mL2

Solid sphere: Icm =
2
5

MR2

The moment of inertia of each object with respect to the y -
axis is found using the parallel axis theorem, Eq. (7.17). The
distance of the parallel axis is L/2 for the rod and (L + R)
for the sphere:

Rod: Iy = Icm + m
(L

2

)2

=
1

12
mL2 +

1
4

mL2 =
1
3

mL2

Solid sphere: Iy = Icm + M(L + R)2 =
2
5

MR2 + M(L + R)2

The total moment of inertia of the system is the sum of these
two:

Iy,total =
1
3

mL2 +
2
5

MR2 + M(L + R)2

Rotational Kinetic Energy
We cannot calculate the kinetic energy of a rotating rigid body using the

formula 1
2 mv2 because the linear velocity of each point is di�erent. Instead, we

have to write an expression in terms of angular velocity.
Let as assume that the rigid body consists of N number of small masses

m1,m2 . . .mN . Let the linear velocity of each of these masses be v1, v2 . . . vN . The
kinetic energy of the rigid body will be the sum of the kinetic energies of these
pointlike masses:

K = 1
2 m1v

2
1 + 1

2 m2v
2
2 + · · · + 1

2 mNv
2
N

Let each of these masses rotate at distances r1, r2 . . . rn from the axis. If we write
the relation v = rω between the linear and angular velocity for each one, we get

K = 1
2 m1(r1ω)2 + 1

2 m2(r2ω)2 + · · · + 1
2 mN(rNω)2

= 1
2

[
m1r2

1 + m2r2
2 + · · · + mnr2

N︸                           ︷︷                           ︸
I

]
ω2
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Therefore, rotational kinetic energy can be expressed as follows:

K = 1
2 I ω2 (rotational kinetic energy ) (7.18)

Note the similarity of this expression with 1
2 mv2 for translational kinetic energy.

Therefore, the law of conservation of energy can still be valid using this expression
for rigid bodies.

Example 7.13

A mass m=1 kg is attached to the end of a rope that is wrapped
around a pulley with radius R=20 cm and with moment of in-
ertia I=0.5 kg·m2 . The mass is released at a height of h=2.7 m
from the ground. With what velocity will it hit the ground?

Answer We write conservation of energy both for the pul-

ley and the mass. The potential energy of the mass m will
be completely converted into kinetic energy when the mass
drops by h :

mgh = 1
2 mv2 + 1

2 Iω2

We write the relation between the linear velocity v of mass
m and the angular velocity of the pulley:

v = Rω
Substituting these values, we �nd the angular velocity:

ω =

√
2mgh

I + mR2 =

√
20 × 2.7

0.5 + 1 × 0.22 = 10 rad/s

From this, we get the linear velocity:
v = Rω = 2 m/s

Example 7.14

A rod with mass m and length L = 1.2 m is hinged from one
end to a wall. The rod is released in horizontal position. What
will its angular velocity be once it reaches vertical position?

Answer
The potential energy of the rod will turn into kinetic energy
once it reaches the vertical position and its center of mass
descends by L/2 :

mg (L/2) = 1
2 I0ω2

The moment of inertia here is with respect to the axis of
rotation O. We can calculate it from Icm with the help of the
parallel axis theorem:

I0 = Icm + m(L/2)2 = 1
12 mL2 + mL2/4 = 1

3 mL2

Substituting these values, we �nd the angular velocity:

ω =

√
3g
L

=

√
30
1.2

= 5 rad/s .

7.5 ROLLING MOTION

In the most general motion of rigid bodies, translation and rotation can occur
simultaneously. This general motion may be very complex. But still, it can always
be examined by separating it into two components:

1. Translational motion of the center of mass: This motion is determined
with Newton’s law:∑

i

~Fi = m ~acm (for translation) (7.19)

2. Rotational motion about the center of mass: This is determined with
the rotational dynamics law:∑

i

τi,cm = Icm α (for rotation) (7.20)
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The torques here should be taken with respect to the center of mass.
In the most general motion, there is no relation between linear acceleration

acm and angular acceleration α , and each may have a di�erent value. However,
these two accelerations are related for an object that rolls on a surface without
slipping.

Let us consider a cylinder that rolls on a horizontal plane without slipping.
The velocity of each point of this cylinder is di�erent, but there is one point that
is at rest, in other words, has zero velocity for one instant. This is point P, where
the object is in contact with the surface (Figure 7.14). Indeed, if the object is not
slipping, the two common points where the surface and the object meet must
have equal velocity. And this means that the velocity of the point on the object is
zero.

Figure 7.14: Rolling motion.This is true only for one instant. Immediately afterwards, this contacting
point of the object will detach from the surface and gain velocity. However,
another point will take its place and its velocity will also become zero at the
moment that it contacts the surface. This point of contact is the instantaneous
axis of rotation. Therefore, we can write the linear velocity and acceleration of
the center of mass, which is at a distance R from this axis, in terms of angular
quantities:

vcm = Rω and acm = Rα (Rolling conditions) (7.21)

Rolling motion can be easily calculated by adding these conditions to the afore-
mentioned translation and rotation equations.

Important note: At the point of contact between the rolling object and the
surface, there is also a friction force f . However, the formula f = µN cannot be
used here, because the object is not slipping and that friction has not reached its
maximum value.

In rolling motion, as translation and rotation take place together, the kinetic
energy is the sum of both types of energy:

K = 1
2 mv2

cm + 1
2 Icm ω

2 (rolling kinetic energy) (7.22)

This kinetic energy expression is used in energy conservation problems that
include rolling motion. (Note: It may seem surprising that it is possible to write
the conservation of energy despite the fact that there is a friction force in rolling
rolling. However, the friction force performs no work, as the point of the object
contacting the surface is motionless.)

Example 7.15

Find the angular acceleration of a cylinder with radius R =

50 cm and mass M = 4 kg released on a plane inclined at an

angle of 37◦ .

Answer
The forces acting on the cylinder are shown in the �gure. We
can explain the direction of the friction force f as follows:
If this was an inclined plane covered with ice, the cylinder
would have slipped down without rolling. Therefore, friction
would be upwards.
Let us write Eqs. (7.19 and 7.20) that we found for rolling
motion, with the indicated axes (we denote acm = a ). For
translational motion, we have:
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In the x -direction: Mg sin θ − f = Ma
In the y -direction: N − Mg cos θ = 0

(The y -equation will not be necessary, because the formula
f = µN does not apply.)
For rotational motion: The friction force f is what ensures
rotation around CM, and the torques due to other forces are
zero:

τ = f R = I α
Also, since the cylinder is not slipping, we have the relation

between the linear and angular accelerations:
a = Rα

f is eliminated between these equations:

α =
MgR sin 37◦

I + MR2

Substituting the moment of inertia of the cylinder I = 1
2 MR2

and the other numerical values,

α =
MgR sin 37◦

3
2 MR2

=
2g sin 37◦

3R
=

20 × 0.6
3 × 0.5

= 8 rad/s2 .

Example 7.16

Find the angular acceleration and the acceleration of the cen-
ter of mass of a cylinder with radius R2 = 40 cm and mass
M = 1 kg pulled with force F = 12 N through a rope wrapped
around the cylinder at R1 = 30 cm from the center.

Answer
The forces acting on the cylinder are shown in the �gure. We
again apply the formulas (7.19 and 7.20):

Translation in the x -direction: F − f = Ma
Rotation around CM: FR1 + f R2 = I α
The relation between the accelerations is: a = R2α

Eliminating the force f between these two equations, we
�nd the acceleration α :

α =
F(R1 + R2)

I + MR2
2

Substituting the moment of inertia of the cylinder I= 1
2 MR2

2
and the other numerical values,

α =
F(R1 + R2)

3
2 MR2

2

=
12 × (0.3 + 0.4)

3
2 × 0.42

= 35 rad/s2

We �nd the linear acceleration of the center of mass, which
is located at a distance of R2 from the instantaneous center
of rotation:

a = R2α = 0.4 × 35 = 14 m/s2 .

Example 7.17

A sphere with radius R and mass M released on an inclined
planed at height h from the ground rolls down without slipping.
What will the velocity of the center of mass be once it reaches
the ground? (For sphere: Icm = 2

5 MR2 )

Answer
According to conservation of energy, the initial potential en-
ergy of the sphere at height h is converted into translational
and rotational kinetic energies at the bottom:

Mgh = 1
2 mv2 + 1

2 I ω2

Since there is no slipping, we can use the relation v = Rω
between the linear and angular velocities. Substituting the
expression I = 2

5 MR2 in this equation as well, we get:

v =

√
10gh

7
=

√
1.4gh

Considering that a pointlike object would have a velocity
v =

√
2gh after descending by h , we see that the sphere goes

down slower, as the factor
√

1.4 is less than
√

2 . The reason
for this is that some of the energy is used for rotation.

7.6 ANGULAR MOMENTUM AND ITS CONSERVATION

In translational motion, momentum was de�ned as the product of mass and
velocity: ~p = m~v . Likewise, an angular momentum is also de�ned for rotational
motion. By using moment of inertia I instead of mass and angular velocity ω

instead of velocity, we get the expression

L = I ω (angular momentum) (7.23)

de�ning the angular momentum of a rigid body. Its unit is kg·m2/s and does
not have a particular name.
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Recall how we expressed Newton’s law in terms of momentum in linear
motion:

F = ma = m
dv
dt

=
d(mv)

dt
=

dp
dt

The rotational motion equation can likewise be expressed as follows:

τ = I α = I
dω
dt

=
d(Iω)

dt

τ =
dL
dt

(7.24)

In the simplest case, the angular momentum of a point object traveling at
velocity v , with respect to an axis of rotation at a distance of r , is as follows:

L = Iω = (mr2)ω = mr (rω)

L = mvr (angular momentum of a pointlike object) (7.25)

Angular momentum is actually a vector quantity. Its most general de�nition
is given as the torque of the linear momentum vector ~p (Figure 7.15):

~L = ~r × ~p

Its direction is perpendicular to the object’s plane of rotation. We will not use the
vector properties of angular momentum here and provide it merely as information.

Figure 7.15: The angular mo-
mentum vector ~L is perpendic-
ular to the rotation plane.

If the net torque of external forces acting on a rigid body is zero, then its
angular momentum will remain constant, according to Eq. 7.24. This expression
is the law of conservation of angular momentum:

τ = 0 =⇒
dL
dt

= 0

L1 = L2 = constant (conservation of angular momentum) (7.26)

When an object is rotating, even if the torque of external forces is zero, its
moment of inertia I may change with the impact of internal forces. For example,
a man on a rotating platform may increase his moment of inertia by spreading his
arms. As the �nal situation can again be considered as a rigid body, the angular
velocity will decrease to conserve angular momentum.

Example 7.18

A mass m is rotating with angular velocity ω = 3 rad/s at
the end of a rope with length r = 50 cm tied to an axis on a
frictionless table. As the rope starts to wrap around the axis,
what will the angular velocity of the object be when the length
of the rope shortens to 25 cm?

Answer
We write the conservation of angular momentum for a point-
like object:

mvr = mv′r′

We write the linear velocities in terms of angular velocity
using the formula v = rω :

r2 ω = r′2 ω′ → ω′ =
r2

r′2
ω

By substituting the value r′ = r/2 , we �nd the �nal angular
velocity:

ω′ = 4ω = 4 × 3 = 12 rad/s .
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Example 7.19

A bullet with mass m = 50 g travels at a speed of v = 200 m/s
and embeds itself into the rim of a disk at rest that can rotate
freely, at a distance of R = 60 cm from the center. As the disk’s
mass is M = 900 g and the moment of inertia is I = 1

2 MR2 ,
�nd the angular momentum of the system (M + m) after the
collision.

Answer
The forces generated during the collision are the internal
forces of the system (bullet+disk) and their net torque is zero.

We write the conservation of angular momentum:
Lbullet + Ldisk = L′bullet+disk

Initially, there is only the angular momentum mvR of the
point mass m . After the collision, this mass will rotate with
an angular velocity ω together with the disk at a distance R .
Therefore,

mvR + 0 = (Idisk + Ibullet)ω
Substituting the moments of inertia of the disk I = 1

2 MR2

and of the bullet I = mR2 , we �nd that:

ω =
mvR

(M/2 + m)R2

We �nd the angular velocity by substituting the numerical
values:

ω =
mv

(M/2 + m)R
=

0.05 × 200
(0.9/2 + 0.05) × 0.6

= 33 rad/s

Example 7.20

In the transmission box of a car, two disks are rotating, one
connected to the engine and the other connected to the trans-
mission shaft. The moment of inertia of the disk connected
to the engine is I1=2 kg·m2 and it rotates with angular veloc-
ity ω1=2000 rpm . The moment of inertia of the disk on the
transmission shaft is I2=5 kg·m2 and it rotates in the opposite

direction with angular velocity ω2=100 rpm . What will be the
�nal angular velocity when the disks are suddenly clamped
together?

Answer We write the conservation of angular momentum:
I1ω1 + I2ω2 = (I1 + I2)ω

ω =
I1ω1 + I2ω2

I1 + I2
If we take ω1 in the positive rotation direction, then ω2 =

−100 rpm . From here, we �nd the �nal angular velocity (there
is no need to change units, as the ratios of I are used):

ω =
2 × 2000 + 5 × (−100)

2 + 5
= 500 rpm

Multiple-choice Questions

1. Which of the following formulas is incorrect?
(a) v = rω (b) at = rα (c) ar = rω2 (d) L = Iω2

2. Which of the following is incorrect for the de�nition of
the torque of a force?

(a) Force×lever arm
(b) Distance×perpendicular component of force
(c) Force×distance
(d) Force×distance2

3. A disk’s mass is doubled and its radius tripled. By what
factor will its moment of inertia increase?

(a) 5 (b) 6 (c) 12 (d) 18

4. Three forces act on an object perpendicular to the axis
of rotation. The force F acts at a distance of 4R , the
force 2F acts at a distance of 3R and the force 3F acts
at a distance of 2R from the axis. Which one applies the
lowest torque?
(a) F (b) 2F (c) 3F (d) F & 3F

5. Which of the following is correct?
(a) An object will not rotate if the net force acting on it
is zero.
(b) An object will not rotate if the net torque acting on
it is zero.
(c) An object will rotate with a constant angular veloc-
ity if the net torque acting on it is zero.
(d) None of the above.

6. The rod with four equal parts marked in the �gure can
rotate around the O-axis. Which of the forces shown
will exert the largest torque?

(a) 4 N (b) 6 N (c) 7 N (d) 8 N
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7. Which of the following is incorrect about the moment
of inertia of an object?

(a) It increases with mass.
(b) It is directly proportional to the square of the dis-
tance from the axis.
(c) Its value depends on the chosen axis.
(d) It increases with velocity.

8. Which of the following is incorrect if the angular accel-
eration of a rotating object is zero?

I. Net torque is zero.
II. Angular velocity is zero.
III. Centripetal acceleration is zero.
IV. Tangential acceleration is zero.

(a) I (b) I & II (c) II & III (d) IV

9. A mass m is rotating around a circle with radius R . An-
other mass 2m is rotating around a circle with radius
R/2 . And a third mass 4m is rotating around a circle
with radius R/2 . Which one has highest moment of
inertia?
(a) m (b) 2m (c) 4m (d) m & 4m

10. The same tangential force F is applied on a ring, on a
disk, and on a sphere with the same masses and radii.
Which one will accelerate faster?
(a) Ring (b) Disk (c) Sphere (d) Equal

11. A rotating object’s angular velocity is doubled and its
moment of inertia is tripled. By what factor will its
kinetic energy increase?

(a) 5 (b) 6 (c) 12 (d) 18

12. A rotating object’s angular velocity is tripled and its
moment of inertia is doubled. By what factor will its
angular momentum increase?

(a) 5 (b) 6 (c) 12 (d) 18

13. What will happen to the Earth’s rotation velocity if the
icebergs melt as a result of “global warming”?

(a) It will increase.
(b) It will decrease.
(c) It will remain constant.
(d) It is impossible to tell.

14. Which of the following is correct for a point A located
at a distance of 1 cm and a point B at a distance of 2
cm from the center of a wheel rotating with constant
angular velocity?

(a) Centripetal accelerations are equal.
(b) Linear velocities are equal.
(c) Tangential accelerations are equal.
(d) Angular velocities are equal.

15. The moment of inertia of a 3 kg object with respect to its
center of mass is Icm = 5 kg·m2 . What will its moment
of inertia be in units of kg·m2 with respect to a parallel
axis that is 2 m away?

(a) 10 (b) 15 (c) 17 (d) 20

16. Which of the objects in the �gure above has the highest
moment of inertia?

(a) A (b) B (c) C (d) D

17. Which of the following is incorrect for a rolling objects?
(a) The linear velocity is di�erent at each point.
(b) The velocity of the point in contact with the ground
is zero.
(c) The angular velocity is the same everywhere.
(d) No friction force acts on the object.

18. The moment of inertia of a solid cylinder is 1
2 MR2 and

that of a hollow cylinder is MR2 . Two cylinders, one
solid and one hollow, with equal masses and radii are
released at the same height on an inclined plane. Which
one will roll down and reach the bottom �rst?

(a) The solid cylinder.
(b) The hollow cylinder.
(c) They will arrive at the same time.
(d) It is impossible to tell.

19. Which of the following is incorrect if the net torque on
an object is zero?

(a) The angular acceleration is zero.
(b) The kinetic energy remains constant.
(c) The angular momentum increases uniformly.
(d) The angular momentum remains constant.

20. Which is correct for a rolling object?
(a) The axis of rotation is the center of mass.
(b) The axis of rotation is the point in contact with the
surface.
(c) The translational kinetic energy is zero.
(d) The rotational kinetic energy is zero.
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Problems

7.1 Angular Kinematics

7.1 A wheel at rest starts to rotate and reaches an angular
velocity of 54 rpm in 3 s . Calculate the angular acceleration
of the wheel and the number of revolutions it makes during
this interval. [A: 0.6π rad/s2 and 1.4 revolutions .]

7.2 A motor is rotating at angular velocity 90 rpm and, due
to a power failure, stops after making 6 revolutions . Calcu-
late its angular acceleration and the time that it takes to stop.

[A: −0.38 rad/s2 and 8 s .]

7.3 A wheel initially rotating at a certain angular velocity
suddenly starts to accelerate and reaches an angular velocity
of 120 rpm after making 3 revolutions in 2 seconds. Find the
angular acceleration of the wheel and its initial velocity.

[A: π rad/s2 and 2π rad/s .]

7.4 A wheel with a radius of 30 cm accelerates with angu-
lar acceleration 20 rad/s2 to reach angular velocity 45 rpm .
What will be the linear velocity and the tangential and cen-
tripetal accelerations of a point on the rim of the wheel?

[A: v = 0.45πm/s , at = 6 m/s2 , ar = 6.8 m/s2 .]

Problem 7.5
7.5 On a bicycle, the sprocket (small disk connected to the
rear wheel) has a radius of r1=5 cm and the crankset (larger
disk connected to the pedal) has a radius of r2=10 cm . The
biker starts from rest and increases the angular velocity of
the crankset to ω2=30 rpm in 2 seconds. (a) What is the an-
gular acceleration of the crankset? (b) What will the angular
velocity and acceleration of the sprocket be at the end of this
time? (c) What are the �nal centripetal accelerations on the
rims of both disks?

[A: (a) α2 = 1.57 rad/s2 , (b) ω1 = 6.28 rad/s ,
α1 = 3.14 rad/s2 , (c) a1r = 2 m/s2 , a2r = 1 m/s2 .]

7.6 A rotating wheel with a radius of 80 cm starts to slow
down when the linear velocity of a point on the rim is 24 m/s
and stops in 5 seconds. (a) What are the angular acceleration
and the number of revolutions that it will make until it stops?
(b) What are the initial tangential and centripetal accelera-
tions on the rim?

[A: (a) α = −6 rad/s2 , 12 revolutions , (b) at = −4.8 m/s2 ,
ar = 720 m/s2 .]

7.2-3 Torque - Rotational Dynamics

7.7 All of the forces shown in the �gure below have the
same magnitude of 10 N . As the moment of inertia of the

rod around the center of rotation O is I=5 kg·m2 , calculate
the direction of rotation and angular acceleration of the rod.

[A: 0.8 rad/s2 , counterclockwise.]

Problem 7.7

Problem 7.8

7.8 The pulley in the �gure has a radius of R=10 cm and
moment of inertia I=0.1 kg·m2 . The masses m1=1 kg and
m2=2 kg are attached to the ends of a rope wrapped around
the pulley. Calculate the accelerations and the tensions in the
ropes when the system is released.

[A: α = 7.7 rad/s2 , a = 0.77 m/s2 , T1 = 11 N , T2 = 19 N .]

Problem 7.9

7.9 The square plate seen in the �gure has a side length
of 1 m and a moment of inertia I0=7 kg·m2 with respect to
the center of rotation O. The forces F1=10 N , F2=20 N and
F3=30 N are applied on the corners of this square in the di-
rections shown in the �gure. What is the angular acceleration
of the plate? [A: 0.22 rad/s2 .]

Problem 7.10

7.10 The pulley �xed to the upper end of the inclined plane
shown in the �gure has a radius of R=20 cm and moment
of inertia I=0.4 kg·m2 . The slope angle of the plane is 37◦

and the coe�cient of friction is µ=0.2 . A block with mass
m=1 kg is attached to the end of the rope and released. Find
the accelerations and the tension in the rope.

[A: 2 rad/s2 , 0.4 m/s2 , 4 N .]
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Problem 7.11
7.11 The moment of inertia of the pulley shown in the �g-
ure is I=0.45 kg·m2 . A rope attached to a block with mass
m1=1 kg at rest on a horizontal plane is wrapped around
the pulley at an inner radius of R1=10 cm . Another mass
m2=2 kg hanging freely is attached to another rope that is
wrapped around the pulley at a radius of R2=20 . The coe�-
cient of friction on the plane is µ=0.4 . Calculate the accel-
erations and the tensions in the ropes when the system is
released.
[A: α=7.2 rad/s2 , a1=0.7, a2=1.4 m/s2 , T1=4.7 , T2=17 N .]

Problem 7.12
7.12 Two frictionless planes are inclined at angles of 30◦

and 53◦ . A block with mass m1=1 kg is placed on the �rst
and another block with mass m2=2 kg on the second. The
two blocks are tied to the two ends of a rope passing through
a pulley with a radius of R=50 cm and moment of inertia
I=2 kg·m2 . Find the accelerations and the tensions in the
rope. [A: 2 rad/s2, 1 m/s2 , T1 = 6, T2 = 14 N .]

Problem 7.13
7.13 A rope is wrapped around two pulleys, as shown in the
�gure, and its free end is attached to a block of mass m=5 kg
hanging freely. The radii of the pulleys are R1=10 cm and
R2=20 cm , and their moments of inertia I1=0.1 kg·m2 and
I2=0.2 kg·m2 , respectively. Calculate the accelerations and
the tensions in the ropes when the system is released.

[A: a=2.5 m/s2 , α1=25, α2=12.5 rad/s2 ,
T1=25 , T2=37.5 N .]

Problem 7.14
7.14 A cylindrical roll of paper with a radius of R=10 cm and
moment of inertia 0.2 kg·m2 rests against a vertical wall by

a rope attached to its center. The rope makes an angle of 37◦

with the wall. The coe�cient of friction of the wall is 0.3 .
A tangential downward force F=10 N is applied on the roll.
Find the angular acceleration of the roll. (Hint: Use the equa-
tions (7.19–7.20) of general motion.) [A: α = 4.1 rad/s2 .]

7.5 Rolling Motion

Problem 7.15
7.15 A wheel at rest on a horizontal plane has a mass 1 kg , a
moment of inertia I=0.2 kg·m2 , an inner radius of R1=10 cm
and an outer radius of R2=20 cm . The wheel is slowly pulled
vertically upwards with a force F=8 N by means of a rope
wrapped around at radius R1 . If the wheel is rolling without
slipping, calculate the angular acceleration of the rolling mo-
tion and the linear acceleration of the center of mass.

[A: α = 3.3 rad/s2 , acm = 0.67 m/s2 .]

Problem 7.16
7.16 A sphere with mass M and radius R is rolling on a
horizontal plane with velocity v=7 m/s and then climbs to a
plane at height h=2.8 m . The moment of inertia of the sphere
is I= 2

5 MR2 . Find the �nal linear velocity of the sphere. (Note:
The mass and radius will cancel out in the �nal steps of cal-
culation.) [A: 3 m/s .]

Problem 7.17
7.17 A wheel at rest on a plane inclined at 37◦ has a mass
1 kg , a moment of inertia I=0.4 kg·m2 , an inner radius of
R1=10 cm and an outer radius of R2=20 cm . The wheel is
slowly pulled upwards with a force F=15 N parallel to the
plane, by means of a rope wrapped around it at radius R1 . If
the wheel is rolling without slipping, calculate the angular
acceleration of the rolling motion and the linear acceleration
of the center of mass. [A: α = 7.5 rad/s2 , acm = 1.5 m/s2 .]

7.6 Angular Momentum and Its Conservation
7.18 A disk with a moment of inertia I1=2 kg·m2 and rotat-
ing with angular velocity ω1=8 rad/s clamps together with
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another disk with a moment of inertia I2=3 kg·m2 and rotat-
ing in the opposite direction on the same axis with angular
velocity ω2=6 rad/s . What will be the common angular ve-
locity of the two disks? [A: −0.4 rad/s .]

Problem 7.19
7.19 A rod with mass M=10 kg and length L=1 m can rotate
freely about its end hinged to the ceiling. A bullet with mass
m=100 g and a horizontal velocity v=100 m/s hits and sticks
to the free end of the rod. The moment of inertia of the rod
with respect to its center of mass is Icm = ML2/12 . (a) What
will be the angular velocity of the (rod+bullet) system right
after the collision? (b) How high will the bullet rise? (Note:

When the bullet rises by h , the center of mass of the rod will
rise by h/2 .) [A: (a) ω = 2.9 rad/s , (b) h = 0.29 m .]

Problem 7.20

7.20 A rope tied to a mass m=1 kg on a frictionless table is
passed through a hole in the center of the table and is allowed
to rotate in a circle when a force F is applied to the other end.
(a) What should the force F be so that the mass m can rotate
with angular velocity ω = 5 rad/s on a circular trajectory
with radius 60 cm? (b) What will the angular velocity be if
the rope is pulled down and the rotation radius is brought to
30 cm? [A: (a) F = 15 N , (b) ω′ = 4ω = 20 rad/s .]



8
STATIC EQUILIBRIUM

Mostar Bridge in Bosnia and
Herzegovina was commissioned
by the famous Ottoman Grand
Vizier Sokollu Mehmet Pasha
near his birthplace in 1566. Its
beauty and historical value has
been recognized by UNESCO in
its selection as a World Heritage
Site.
Is it su�cient to have the resul-
tant force be equal to zero to
keep this bridge in equilibrium?
Also, don’t the forces need to
have a certain distribution?

Stationary rigid structures are a part of our daily lives. The houses that we
live in, the roads and bridges that we pass by in tra�c, dams, etc. All of these
structures are able to maintain their statical status because they can actually
keep the forces acting on them in equilibrium, in other words, they remain in
static equilibrium. The science that is concerned with objects and structures
in equilibrium is called Statics; it is an important area of study in civil and
mechanical engineering, architecture and many other branches of science and
technology.

In this chapter, we will discuss the conditions of static equilibrium of rigid
bodies.
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8.1 TWO CONDITIONS OF STATIC EQUILIBRIUM

In examining rolling motion in Chapter 7, we saw that the most general
motion of rigid bodies can be separated into two components:

Figure 8.1: The most general
motion of a rigid body is sep-
arated into two as the transla-
tional motion of the center of
mass and the rotational motion
around the center of mass.

The �rst one is the translational motion of the center of mass and was
determined by Newton’s law (Equation 7.19):∑

i

~Fi = m ~acm (for translation) (8.1)

The second type of motion, rotational motion about the center of mass,
is determined by the law of rotation dynamics (Equation 7.20):∑

i

τi,cm = Icm α (for rotation) (8.2)

Therefore, these two types of motion should be prevented for a rigid body to
remain in static equilibrium. The condition required to prevent translational
motion can be written directly as follows:∑

i

~Fi = 0 (8.3)

Writing this vector equation for the components, we have:

First Condition of Equilibrium

The net external force acting on an object should be zero:∑
i

Fi,x = 0 and
∑

i

Fi,y = 0 (8.4)

Having the center of mass at rest, let us now examine the rotational motion
of the object. To prevent rotation, we must have∑

i

τi,cm = 0

For a rotating body, this torque was calculated with respect to the center of mass.
However, in the static condition the axis of rotation is irrelevant. This is because,
if the object is not rotating, the net torque is zero regardless of the chosen axis.
(Otherwise, it would rotate about that axis.) Therefore, we write the second
condition of equilibrium as follows:

Second Condition of Equilibrium

The net torque of forces acting on an object about an arbitrary
axis should be zero:∑

i

τi = 0 (8.5)
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These two conditions are, in principle, su�cient for static equilibrium. How-
ever, in real life, there are other parameters to consider, and our conditions may
not be enough to calculate the static equilibrium of complex objects that consist
of many parts (bridges, buildings, etc.) Other parameters are added to achieve the
full solution of the problem. We will discuss these through worked examples.

8.2 APPLICATIONS

Now let us see how static problems can be solved using conditions of equilib-
rium, and other information particular to the problem at hand.

Example 8.1

A block with weight W=10 N is in equilibrium hanging from
two ropes as in the �gure. Calculate the tensions in the ropes.

Answer
There will be no rotational motion, as the tensions in the
ropes and the weight W meet at the same point and their
torques are zero, hence the �rst condition will be su�cient.
We write it with the chosen axes:∑

i Fi,x = 0 → −T1 cos 30◦ + T2 cos 53◦ = 0∑
i Fi,y = 0 → +T1 sin 30◦ + T2 sin 53◦ −W = 0

We substitute the numerical values:
−0.87T1 + 0.6T2 = 0

0.5T1 + 0.8T2 = 10
From here, we �nd that T1 = 6 N and T2 = 8.7 N .

Example 8.2

The weight W1=20 N is at rest on a horizontal plane with a
coe�cient of friction µ=0.4 . It is tied to a horizontal rope that
connects to another weight W hanging freely. Both ropes are
connected to a third rope attached to the wall at an angle of
45◦ What is the maximum weight W2 that can be attached
without having the weight W1 slide?

Answer
The free-body diagrams are shown above. The three forces
W2 , the tension T and the friction force f meet at point O,
hence only the �rst condition is needed. The friction force
can have any value, but it will be proportional to the normal
force N1 when the weight W1 starts to slide:

f = µN1 = µW1

Therefore, we write the �rst condition of equilibrium at point
O for these three forces:∑

i Fi,x = −µW1 + T cos 45◦ = 0∑
i Fi,y = +T sin 45◦ −W2 = 0

By taking the unknown T from the second equation and
substituting it in the �rst one, we get W2 :

W2 = µW1 tan 45◦ = 0.4 × 20 × 1 = 8 N

Example 8.3

A beam with weight W = 10 N is hinged to a wall from one
end and tied to the wall from the other end with a cable, making
a 37◦ angle with the horizontal. Calculate the tension in the

cable and the reaction force on the hinge.

Answer
There are three forces acting on the beam: The weight W ,
the tension T along the cable and the reaction force R on
the hinge that can be in any direction.
We �rst write the �rst condition of equilibrium according to
the axes shown in the �gure:∑

i Fi,x = −T cos 37◦ + Rx = 0∑
i Fi,y = +T sin 37◦ + Ry −W = 0

For the second condition, we are free to calculate the torque
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with respect to any arbitrary axis. Hence, it is convenient to
choose an axis that gives a simpler equation. Here, it will be
smart to choose the axis at point A, because two unknowns
(Rx, Ry ) will both have zero torque and not be included in
the equation:∑

i τi,A = 0 → −W
L
2

+ T sin 37 L = 0

We can immediately �nd T from this last equation:

T =
W

2 sin 37◦
=

10
2 × 0.6

= 8.3 N

Substituting this value in the other two equations, we �nd
the components of the reaction force Rx,Ry :

Rx = 6.7 N and Ry = 5 N

Example 8.4

The dimensions of an average human arm are shown in the
�gure. The biceps muscle acts at a distance of 5 cm from the
elbow. The lower half of the arm has a weight of W1 = 20 N
and its center of mass is located at 15 cm distance from the
elbow. The distance of the hand to the elbow is 35 cm . How

much force F should the biceps muscle apply to lift a weight
of W2 = 10 N?

Answer
The forces on the arm are shown in the �gure. We can take
the torque with respect to the elbow, as we do not need the
reaction force R :∑

i τi = 0 → F × 0.05 −W1 × 0.15 −W2 × 0.35 = 0
From here, we calculate the force F :

F =
0.15W1 + 0.35W2

0.05
= 150 N .

It may seem surprising that the force on the biceps is 15 times
greater, but it is true. It is di�cult for the arm to carry a load
in the horizontal position, and it therefore gets tired very
quickly.

Example 8.5

A ladder with weight W and length L is leaned against a wall
with angle θ . The wall is frictionless, while the coe�cient of
friction is µ=0.5 on the horizontal plane. What is the minimum
angle θ at which the ladder can stand without sliding?

Answer
The forces acting on the ladder are shown in the �gure. As
the wall is frictionless, it will only have the perpendicular
reaction force N2 . The ground has both the normal reaction
force N1 and the friction force f .

The friction force f can have any value when the ladder
is in equilibrium, but when the ladder starts to slide, it will
reach its maximum value f =µN1 . Therefore, we will make
the calculations for this limit value.
We write the �rst condition for equilibrium:∑

i Fi,x = µN1 − N2 = 0∑
i Fi,y = +N1 −W = 0

For the second condition, it is smart to choose point A to
calculate the torque, then two unknowns ( f and N1 ) will not
be included in the equation:∑

i τi,A = 0 → −W
L
2

cos θ + N2 L sin θ = 0

By eliminating the unknowns N1, N2 from these equations,
we �nd θ :

tan θ =
2
µ

=
2

0.5
= 4 → θ = 76◦

Example 8.6

We want to push a chest without toppling it. The chest’s weight
is W=500 N and its length is L=2 m and it is at rest on a hor-
izontal plane with a coe�cient of friction µ=0.8 . (a) What is
the minimum horizontal force F that can move the chest? (b)

At what maximum height h can we apply this minimum force
F without toppling the chest?

Answer
(a) It is su�cient to apply a force greater than the friction
force in order to move the chest. As the friction force will
reach the value f = µN once the chest starts to slide, we get

F = f = µN = µW
. We substitute the numerical values to �nd F :

F = 0.8 × 500 = 400 N

(b) The chest, when it is about to roll over, will only be in
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contact at point A. The chest will topple when the torque
of the force F about point A is greater than or equal to the
torque of the weight W . Calculating this limit condition, we
get

∑
i τi,A = 0 → −F h + W

L
2

= 0

Substituting the value of F that we found in item (a),

h =
L

2µ
=

2
2 × 0.8

= 1.25 m

Example 8.7

The two arms of a ladder shaped like an ‘A’, standing motionless
on a frictionless horizontal plane, are hinged from the top and
tied to each other with a horizontal rope near the bottom. Each
of the ladder arms has weight W=30 N and length L=4 m .
The points at which the rope is tied are 1 m from the lower end
of the ladder. Find the tension in the rope and the reaction force
on the hinge.

Answer
This problem is a good example of the isolation technique in
the equilibrium problem of two objects.
First, let us consider the ladder as a whole (the �gure below).
The forces on the hinge and the rope need not be shown,
because they are internal forces of this system. We can only
write 2N = 2W for the reaction forces on the ground. Hence,
we will never be able to �nd T and the reaction force at the
hinge by considering the whole ladder.

Therefore, one of the arms of the ladder should be isolated
from the other (the �gure on the right). According to the law
of action-reaction, these forces will be equal and opposite on
each arm. (According to symmetry, the force R must also
be horizontal, otherwise it would be downwards in one and
upwards in the other.)
We can now write the conditions of equilibrium for one arm.
The �rst condition of equilibrium for the arm AC is:∑

i Fi,x = +T − R = 0∑
i Fi,y = +N −W = 0

From here, we get the results T = R and N = W .
We write the second condition with respect to point A:∑

i τi,A = R (4 sin 53◦)−T (1 sin 53◦)−W (2 cos 53◦) = 0
Using the fact that R = T in this equation, we �nd the result:

T = R =
2W

3 tan 53◦
=

2 × 30
3 × 1.33

= 15 N

Example 8.8

A barn door with height H=2 m ,width L=1 m , and weight
50 N is hinged to the wall at its top and bottom edge corners.
Calculate the horizontal and vertical components of the reaction
forces on the top and bottom hinges.

Answer
This problem is interesting in that it shows how the num-
ber of equations may sometimes be insu�cient for the full
solution of static equilibrium problems.
The forces acting on the door are shown in the �gure. The

directions of the forces are chosen such that the top hinge
will pull and the bottom hinge will push the door.
We write the �rst condition of equilibrium:∑

i Fi,x = R1x − R2x = 0 → R1x = R2x∑
i Fi,y = R1y + R2y −W = 0 → R1y + R2y = W

Let us take the torque with respect to point A:∑
i τi,A = R2xH −W

L
2

= 0

From here, we �nd the horizontal components of the reaction
forces:

R1x = R2x =
L

2H
W =

1
4

50 = 12.5 N

We have no information for the vertical components of the
reaction force other than the equation R1y + R2y=W found
above. Even if we took torque with respect to another point,
only the sum of these two vertical components would appear
in the equation. Therefore, it is not possible to calculate the
vertical components separately; we can only know their sum:

R1y + R2y = W = 50 N .
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Problems

Problem 8.1

8.1 Two weights hanging from ropes as shown in the �gure
above, are in equilibrium. If W1=10 N , �nd the weight W2
and the tensions in the ropes.

[A: W2 = 13, T1 = 20, T2 = 22, T3 = 17 N .]

Problem 8.2

8.2 A block with weight W1=10 N is placed on a plane in-
clined at an angle of 30◦ and with a coe�cient of friction
µ=0.9 . Another weight W2 is tied to the weight W1 with a
rope parallel to the inclined plane and with another rope at
an angle of 37◦ to the wall. What is the largest weight W2
that can be hung without having the weight W1 slide?

[A: 1.8 N .]

8.3 A weight W1=5 N is hung at the 10 cm mark of a uni-
form meter stick. The stick is balanced horizontally if a knife
edge is placed under the 40 cm mark. What is the weight of
the meter stick? [A: 15 N .]

8.4 A horizontal beam of weight W1=10 N and length L=1 m
is supported by two vertical ropes attached to each end. A
weight W2=30 N is hung at a distance d = 30 cm from the
right end. Find the tensions in the ropes.

[A: 14N and 26 N .]

Problem 8.5

8.5 In the �gure, one end of a beam with weight W2=20 N
and length L is hinged to the wall and a weight W1=10 N is
hung on the other end. The beam is kept at an angle of 37◦

with the horizontal by means of a horizontal rope tied at a
distance 3L/4 from the hinged end A. Find the tension in
the rope and the horizontal and vertical components of the
reaction force at the hinge. [A: T = Rx=36, Ry=30 N .]

Problem 8.6
8.6 A stick with negligible mass and a length of 5 m is hinged
to a wall from one and, with its other end freely resting on
a frictionless horizontal plane. A horizontal force F=10 N
is applied to the bottom end of the stick. Calculate the hori-
zontal and vertical components of the reaction force on the
hinge. [A: Rx = 10, Ry = 7.5 N .]

Problem 8.7
8.7 A horizontal beam with length L=1 m and weight
W1=10 N is hinged to a wall from one and tied to the wall
from the other end with a rope making a 37◦ angle with the
horizontal. A block with weight W2=40 N is placed on this
beam at distance x . The rope is able to endure a maximum
tension of 50 N . Find the maximum distance x that the block
can go and the components of the reaction forces on the hinge.

[A: x = 0.63 m , Rx = 40, Ry = 20 N .]

Problem 8.8
8.8 The beam in the �gure above with length L and weight
W1=10 N is hinged to the ground from one end at 53◦ angle
with the horizontal and tied to the ground with a rope making
a 30◦ angle with the horizontal. A weight W2=20 N is hung
on the free end of the stick. Calculate the tension in the rope
and the components of the reaction force on the hinge.

[A: T = 38, Rx = 33, Ry = 49 N .]

Problem 8.9
8.9 A ladder with weight W1=50 N and length L=3 m is
leaned against a frictionless wall at an angle of 53◦ with the
horizontal. The coe�cient of friction on the ground is 0.4 . A
man with weight W2=700 N is climbing on the ladder. How
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far from the lower end can the man climb before the ladder
slides? [A: x=1.61 m .]

Problem 8.10
8.10 The dimensions of an average human arm are shown
in the �gure. The biceps muscle acts at a distance of 5 cm
from the elbow. The lower half of the arm has a weight of
W1=20 N and its center of mass is located at 15 cm distance
from the elbow. The distance of the hand to the elbow is
35 cm . How much force F should the biceps muscle apply
to lift a weight of W2 = 50 N? [A: 470 N .]

Problem 8.11
8.11 A rod with weight W=10 N and length L=1 m is freely
placed vertically on a horizontal plane with a coe�cient of
friction µ=0.5 . The top end of the rod is tied to the ground
using a rope making a 53◦ angle with the vertical. The rod is
being pulled by a horizontal force F=20 N acting at height
h from the ground. At what height h will the lower end of
the rod start to slide? [A: h = 0.55 m .]

Problem 8.12
8.12 A beam with length L and weight W1 = 10 N is hinged
to a wall from one end, and tied to the same wall from the
other end with a rope making a 37◦ angle with the horizontal.
A signboard with mass W2 = 20 N is hung on this beam. One
end of the signboard is tied to the outer end of the beam and
the other end at a distance of L/3 from the hinge. Calculate
the tension in the rope and the components of the reaction
force on the hinge. (Hint: The signboard applies equal forces

of W2/2 to each of the hanging points.)
[A: T = 31, Rx = 24, Ry = 12 N .]

Problem 8.13
8.13 A uniform rod with two ropes tied at each end is in
equilibrium, as shown in the �gure. The rope attached to the
wall is horizontal. The rope attached to the ceiling makes
an angle of α=53◦ with the horizontal. What is the angle β
of the rod? (Note: The weight and length of the rod will not
appear in the �nal expression.) [A: β=34◦ .]

Problem 8.14
8.14 A cylinder with radius R=50 cm and a mass of 1 kg
is pulled at its center by a force F along a horizontal plane.
However, a step with height h=10 cm on the plane is pre-
venting motion. What should the minimum value of the force
F be for the cylinder to overcome the step? (Hint: What
will the normal force be when the cylinder is just leaving the
ground?) [A: F = 7.5 N .]

Problem 8.15
8.15 The two arms of a ladder shaped like a ‘slanted A’,
standing on a frictionless horizontal plane, are hinged from
the top and tied to each other with a horizontal rope near
the bottom. The ladder arms have weights 30 N and 40 N ,
and lengths 3 m and L=4 m , respectively. The rope is at a
height of 1 m from the ground. Find the tension in the rope,
the normal forces on the ground, and the components of the
reaction force on the hinge.

[A: T = Rx = 40, Ry = 7, N1 = 37, N2 = 33 N .]
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HARMONIC MOTION

The colibri (hummingbird), with
a size of 2 cm, is the smallest
bird that is not extinct. It can
�ap its wings as fast as 80 beats
per second.
Which concepts should be used
to characterize the periodic mo-
tion? How can we associate
these concepts with the laws of
physics?

A motion that repeats itself regularly is called a periodic motion. It is the
most frequently encountered type of motion in nature, in our daily lives and in
technology. The oscillation of a pendulum, the vibration of a guitar string, our
heartbeats or the vibration of our vocal cords, the ebb and tide of the sea, etc.
Even an object at rest is made of vibrating atoms.

Oscillatory motion occurs when an object is disturbed from its equilibrium
position and a restoring force exists that is trying to bring it back. In real life, there
are also other dissipative forces that quickly dampen the oscillations.

We will examine the basic concepts and properties of this motion that repeats
itself within a certain time interval.

9.1 SIMPLE HARMONIC MOTION

The oscillations of a mass connected to a spring represent the simplest motion
in which we can observe the basic features of vibrational motion. Let us �x one
end of a spring with spring constant k to a wall and attach a mass m to its other
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end on a frictionless horizontal plane (Figure 9.1).
The mass starts to vibrate when we pull the spring by x from its normal

length and release. The weight and the normal reaction force perpendicular the
to motion cancel each other out, and are thus not taken into consideration. Since
the spring force causes the motion of the mass, let us write Newton’s law:

Figure 9.1: Spring force is al-
ways in opposite direction to ex-
tension.

F = ma

−kx = m
d2x
dt2 = m x′′

Here, we used x′′ to indicate the second derivative of position x . We have thus
obtained an equation that determines the relation between the position and its
second derivative:

x′′ +
k
m

x = 0 (9.1)

This expression is called the di�erential equation of harmonic motion. We
will be able to determine the motion if we can �nd its solution in the form x=x(t) ,
in other words, the position as a function of time.

Di�erential equations are part of advanced mathematics, and their solution
methods are known. However, we can �nd the solution here without using
advanced techniques. Let us write the equation as follows:

x′′ = −
k
m

x

What is the function x(t) such that its second derivative will be proportional
to its negative? We know these functions: They are sine and cosine functions.
Therefore, we can predict the form of the solution:

x = A cosωt (9.2)

Here, A and ω are two constants to be determined later. We could have chosen
the solution as a sine function as well (We will discuss when to choose sine or
cosine below.)

Let us �rst make sure that this function satis�es the di�erential equation. Let
us take the derivative twice:

x′ = −ωA sinωt

x′′ = −ω2A cosωt

We substitute the expressions for x and x′′ in Eq. (9.1) and simplify to get

−ω2A cosωt +
k
m

A cosωt = 0[
− ω2 +

k
m

]
A cosωt = 0

This equation must be true at every time t . The cosine is not always zero, therefore
the expression in the brackets should be zero:[

− ω2 +
k
m

]
= 0
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From here, we �nd the constant ω , called the angular frequency, in terms of
the mass and the spring constant:

ω =

√
k
m

(angular frequency) (9.3)

We will discuss the physical meaning of the angular frequency ω below. At this
stage, the equation of motion of the mass m can be written as follows:

x = A cosωt (simple harmonic motion) (9.4)

This motion is called simple harmonic motion or sinusoidal motion.
Figure 9.2 shows how position x varies with respect to time t .
Selection of the cosine or sine function: We chose the cosine function for
vibration in Eq. (9.4) above. We could have also chosen this as the sine function,
because the sine also satis�es the same equation of motion. The initial position
of the object determines which one is to be chosen (Figure 9.2).

We take x= A cosωt if the object is pulled to a certain distance and released
from that distance at time t = 0 . Indeed, we get cos 0◦ = 1 and x = A at t = 0 ,
as it should be. On the other hand, if the object is thrown from its equilibrium
position at the start, then we should have (x = 0) at t = 0 . Indeed, x = A sinωt
ful�lls this condition, because the sine function gives x = 0 at time t = 0 .

Figure 9.2: The sine and cosine
functions.

(Actually, the cosine and sine are just the same curve. The name varies only
with respect to the place where you draw the vertical axis. You get the cosine if
you have the vertical axis pass through the maximum of the curve and the sine if
you pass it through the zero value.)

In conclusion, our function selection becomes as follows:

x =

 A cosωt (if the object starts at maximum distance)
A sinωt (if the object starts at x = 0)

(9.5)

Now, let us learn the basic concepts of the harmonic motion.
Amplitude ( A )

When the cosine function takes values within the range [−1,+1] , the position
x=A cosωt will also vary between the values [−A,+A] (Figure 9.3). When we
pull the mass attached to the spring by a distance A and the release it, it does
indeed start to go back and forth between [−A,+A] , and never venturing outside
of this range. This quantity A , which is the absolute value of the maximum
extension, is called the amplitude.
Period (T )

Figure 9.3: Amplitude and pe-
riod.

Harmonic motion is periodic, in other words, it repeats itself within a certain
time interval. This complete motion in which the object passes through the same
point in the same direction is called a cycle, and the time to complete one cycle
is called the period (Figure 9.3). Let us �nd the period formula from the equation
of motion.

Let us rewrite the position of the object at any time t :

x = A cosωt
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There should pass a time interval T such that the object passes through the same
x again:

x(t + T ) = x(t)

A cosω(t + T ) = A cosωt

cosω(t + T ) = cosωt

The cosine function is periodic in the interval [0, 2π] , in other words, it repeats
itself after 2π . Therefore, the di�erence between the arguments of the cosines on
both sides of the equation must be 2π :

ω(t + T ) − ωt = 2π

ωT = 2π

From here, we �nd the period of the harmonic motion:

T =
2π
ω

(period) (9.6)

This expression is true for all kinds of harmonic motions. In particular, if we use
Eq. (9.3), which we found for the angular frequency of the mass-spring system,
the period formula becomes:

T = 2π
√

m
k

(Period of spring-mass system) (9.7)

It can be checked that this expression gives the period unit in terms of seconds
(s). According to this formula, when we attach an object with a known mass m
to a spring with a known constant k and vibrate it, its period T is determined.

Frequency ( f )
The number of cycles that the objects performs per unit time is called the

frequency and is denoted by f . Accordingly, frequency is the reciprocal of
period. For example, if the period is 3 seconds, then the number of oscillations in
1 second will be 1/3. Therefore, the expression for frequency is:

f =
1
T

=
ω

2π
(frequency) (9.8)

This expression is true for all kinds of periodic motions. In particular, the fre-
quency of the spring-mass system is

f = 2π

√
k
m

(9.9)

The unit of frequency is 1/second = s−1 and is also called the Hertz (Hz) in
technology:

1 s−1 = 1 Hz (9.10)

If we write the ω in the formula (9.8) in terms of frequency, we get

ω = 2π f (9.11)
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This expression explains why ω is called the angular frequency. When the
frequency is 1, in other words, when a cycle is completed in 1 second, ω takes
the value of 360◦ = 2π as if it were rotating in one complete circle.

As a conclusion, the equations of simple harmonic motion can be written in
one of the three following forms:

x =


A cosωt

A cos
2π
T

t

A cos 2π f t

(9.12)

Example 9.1

The position of an object with mass m=3 kg attached to a spring
varies with time as

x = 6 cos 0.8πt (meters)
(a) What are the amplitude, angular frequency and period of

the motion?
(b) What is the spring constant?
(c) What is the position of the object at time t=5/12 s?
(d) How many seconds does it take for the object to reach the

positions x=0 m and x=2 m?

Answer
(a) Amplitude means maximum extension. As the cosine
function varies within the range [−1,+1] , the object will
go back and forth within the range [−6,+6] . Therefore, the
amplitude will be A=6 m .
Angular frequency is the coe�cient in front of the variable
t . Therefore, we get ω=0.8π s−1=0.8πHz . (It is convenient
to leave the constant π in these calculations. It is sometimes
canceled out and sometimes taken as π2 ≈ 10 .)
We use Eq. (9.6), which relates period to angular frequency:

T =
2π
ω

=
2π

0.8π
= 2.5 s

(b) We use Eq. (9.3), which gives the relation between spring
constant and angular frequency:

ω =
√

k/m → k = mω2

k = 3 × (0.8π)2 = 1.92π2 ≈ 19 N/m .
(c) We use t = 5/12 s in the equation of motion:

x = 6 cos 0.8π ×
5
12

= 6 cos
π

3
Substituting cos π/3= cos 60◦ = 0.5 , we �nd x=3 m .
(d) The distance from inital position x=A to x=0 is one fourth
of a cycle. Therefore, it will reach x=0 in T/4=2.5/4=0.63 s .
In order to �nd the time to reach the other position, we substi-
tute the value x=2 m in the equation of motion and calculate
the t in the cosine:

x = 6 cos 0.8πt → 2 = 6 cos 0.8πt
cos 0.8πt = 1/3 = 0.33

We use the table in Appendix C to �nd the angle whose cosine
is 0.33 as 71◦ = 1.23 radian . It is necessary to use radian units
in these calculations. From here, we �nd time t :

0.8πt = 1.23 → t = 0.49 s

Example 9.2

A mass m attached to a spring with a constant k=125 N/m
completes 5 cycles in 4 seconds.
(a) What are the period, angular frequency and m?
(b) The mass is stretched by 60 cm from its equilibrium po-

sition and released. The time t = 0 is started on the
stopwatch as it passes through the equilibrium position.
Write the equation of the simple harmonic motion.

Answer
(a) Period is the time for one cycle:

T = 4/5 = 0.8 s .
From here, we can calculate the angular frequency and the
mass of the object:

ω =
2π
0.8

= 2.5πHz

m =
k
ω2 =

125
(2.5π)2 = 2 kg .

(b) The object’s position at t = 0 is x = 0 . Therefore, we
must use the sine function, which is zero at t = 0 . Amplitude
is given as A = 0.6 m . The equation becomes:

x = 0.6 sin 2.5πt .

Velocity and Acceleration in Simple Harmonic Motion
We have learned how the position x of a mass attached to a spring varies

with time t . What are the velocity and acceleration of this object at time t ? In
order to determine these, let us start o� by using the derivative de�nitions of
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velocity and acceleration:

x = A cosωt

v =
dx
dt

= −ω A sinωt (9.13)

a =
dv
dt

= −ω2 A cosωt (9.14)

These variations are shown in Figure (9.4). Let us emphasize the important points

Figure 9.4: Position, velocity
and acceleration.

about the position, velocity and acceleration of harmonic motion.
• The velocity and acceleration are also harmonic; they oscillate as sine or

cosine with the same frequency.
• The variations of position and velocity are opposite to each other: When

position reaches its maximum value (x=A) , velocity is zero. In contrast,
as the object passes through the equilibrium point (x=0) , its velocity is
maximum.

• Velocity and acceleration also act in opposition to each other: The accelera-
tion of the object is zero when its velocity is maximum (passing through the
equilibrium point). In contrast, the object has maximum acceleration when
it reaches maximum distance, where it has zero velocity.

• There is a relation between position and velocity that is always true regardless
of what time t is equal to. We use the identity sin2 a+cos2 a = 1 to eliminate
t between x and v :

cos2 ωt =
x2

A2 ; sin2 ωt =
v2

ω2A2

sin2 ωt + cos2 ωt =
x2

A2 +
v2

ω2A2 = 1

Simplifying this expression, we get

v = ω
√

A2 − x2 (9.15)

Hence, if either position or velocity is known, the other can be calculated
without any need to know time.

• There is also a relation between position and acceleration:

a = −ω2 A cosωt

a = −ω2 x (9.16)

Therefore, if either position or acceleration of the object is known, the other
can be calculated without reference to time t .

Example 9.3

A mass m=2 kg attached to a spring with spring constant
k=72 N/m is stretched by 50 cm from its equilibrium posi-
tion and released. (a) What will be its maximum velocity and
acceleration? (b) What will its velocity and acceleration be as
it passes through position x = 30 cm?

Answer (a) We �rst calculate the angular frequency:

ω =

√
k
m

=

√
72
2

= 6 Hz

In Eqs. (9.13–9.14), which we found for velocity and accelera-
tion, we set sine and cosine to their maximum values of 1 to
calculate the maximum values of velocity and acceleration:

vmax = ωA = 6 × 0.5 = 3 m/s

amax = ω2A = 62 × 0.5 = 18 m/s2 .
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(b) We use Eq. (9.15), which gives the relation between posi-
tion and velocity:

v = ω
√

A2 − x2 = 6
√

0.52 − 0.32 = 6 × 0.4 = 2.4 m/s .

We use Eq. (9.16), which gives the relation between position
and acceleration:

a = −ω2 x = −62 × 0.3 = −11 m/s2 .

Example 9.4

The angular frequency of an object performing simple harmonic
motion is 5 Hz . This object passes through position x = 3 m
with velocity v = 20 m/s . (a) What is the amplitude of the
motion? (b)What is its maximum velocity?

Answer
(a) We use Eq. (9.15), which gives the relation between posi-
tion and velocity:

v2 = ω2
(
A2 − x2

)
We take the amplitude A from this formula:

A =
√

x2 + (v/ω)2

A =
√

32 + (20/5)2 = 5 m .
(b) Velocity will be maximum when x = 0 in the afore-
mentioned formula, in other words, when the object passes
through the equilibrium point. Accordingly,

vmax = ωA = 5 × 5 = 25 m/s .

Energy of Harmonic Motion
Harmonic motion will have a kinetic energy dependent on the velocity of

the mass and a potential energy dependent on the extension of the spring. Both
types of energy will change with respect to time.

Using the expression for velocity from Eq. (9.13), in the de�nition of kinetic
energy, we get

K = 1
2 mv2 = 1

2 mω2 A2 sin2 ωt (9.17)
Using Eq. (9.4) for position x in the elastic potential energy of the spring, we get

U = 1
2 kx2 = 1

2 k A2 cos2 ωt (9.18)

The variations of the kinetic and potential energies are shown in Figure 9.5a.

Figure 9.5: (a) The variations of
kinetic and potential energies: (a)
against time t , (b) against posi-
tion x .

Let us calculate the total mechanical energy:

E = K + U= 1
2 mω2︸︷︷︸

k
A2 sin2 ωt + 1

2 kA2 cos2 ωt=1
2 kA2(sin2 ωt + cos2 ωt︸               ︷︷               ︸

1
)

E = 1
2 k A2 = constant

Therefore, the total energy is constant in simple harmonic motion and has the
value of the potential energy at maximum extension. This is easy to understand,
because its velocity will be zero when it reaches maximum extension, in other
words, all of it will have turned into potential energy:

E = K + U = 1
2 kA2 (total energy of harmonic motion) (9.19)

Figure 9.5b also shows how kinetic and potential energies vary with position x
and how their sum E remains constant.

Note that the energy is proportional to the square of the amplitude A . The
energy is multiplied by a factor of 4 when the amplitude is doubled. This is why
the destructive impact of earthquakes increases with amplitude.
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Example 9.5

A mass m=1 kg attached to a spring with spring constant
k = 400 N/m has a total energy of 800 J .
(a) What is the amplitude of the oscillations?
(b) What will the velocity of m be when the potential energy

of the system is 200 J?

Answer
(a) We use Eq. (9.19), which we found for total energy:

E = K + U = 1
2 kA2

A =

√
2E
k

=

√
1600
400

= 2 m

(b) If the potential energy is 200 J , the kinetic energy will be
800 − 200 = 600 J :

1
2 mv2 = 600 → v =

√
2 × 600

1
= 35 m/s

Example 9.6

In a system performing simple harmonic motion,
(a) At which x/A ratio will the kinetic and potential energies

be equal?
(b) What will the ratio of the kinetic and potential energies

be when x = A/2?

Answer
(a) We write the total energy expression:

1
2 mv2 + 1

2 kx2 = 1
2 kA2

If the kinetic and potential energies are equal, this means

that they are both half of the total energy. This value is taken
for potential energy:

1
2 kx2 = 1

2

(
1
2 kA2

)
→

x
A

=
1
√

2
(b) Let us write the formula that gives velocity in terms of
position:

v2 = ω2
(
A2 − x2

)
We write the ratio of energies for the value x = A/2 in this
expression:

K
U

=
mv2

kx2 =
H
HHmω2 (A2 − A2/4)
ZZk (A/2)2 = 3

Phase Angle
We had previously discussed when to use cosine or sine in the harmonic

motion equation: We use sinus if the object starts from the origin, and cosine if it
is released from the maximum distance.

What if the motion starts at any place other than these two points? The
answer to this question is seen in Figure 9.6. We can make the function start at
any point by adding another term besides (ωt) as the argument of cosine. Having
the unit of an angle, this constant argument is called the phase angle or phase
di�erence and is indicated with φ :

Figure 9.6: Phase angle φ .
x = A cos(ωt + φ) (9.20)

In this expression, we should �nd the sine function when we take φ = −90◦ =

−π/2 , in other words, when we start the cosine function 90◦ from behind. Indeed,
the trigonometric identity cos(α − 90◦)= sinα gives us the sine equation.

We can calculate the phase angle φ in terms of the initial position x0 when
we set t = 0 in this expression:

x0 = A cos φ =⇒ cos φ =
x0
A

(9.21)

The phase di�erence will be important when we consider the superposition of two
harmonic motions. We will return to this issue later, in the section on interference
of waves.

Example 9.7

A mass-spring system can oscillate at an angular frequency
ω=5 Hz . The mass is stretched by 2 m from its equilibrium

position and released. The clock is started as it passes through
position x = 1 m . Find the phase angle and write the equation
of the harmonic motion.
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Answer
We write the most general harmonic motion expression:

x = A cos(ωt + φ)
We require that this equation satisfy the value x = 1 m at
time t = 0 :

1 = 2 cos(0 + φ) → cos φ = 0.5

The angle whose cosine is 0.5 is 60◦ = π/3 . Therefore, we
write the equation of the motion as follows:

x = 2 cos(5t + π/3)

Example 9.8

The equation of a harmonic motion is given as
x = 3 cos(0.2πt − π/4)

(a)What is its position at the start?
(b)When will it reach the maximum position?

Answer
(a) We use the starting time, in other words, t = 0 , in the

given equation, and �nd the position:
x = 3 cos(0 − π/4) = 3 cos(π/4) = 3 ×

√
2/2 = 2.1 m .

(b) Maximum position is the amplitude x = A . We substitute
the amplitude value for x :

3 = 3 cos(0.2πt − π/4) → cos(0.2πt − π/4) = 1
The angles whose cosine is 1 are 0, 2π, 4π . . . . We choose
the smallest one 0 and �nd the time t :

0.2πt − π/4 = 0 → t = 1.25 s .

9.2 PENDULUM MOTION

Simple Pendulum
A mass tied to the end of a rope performs oscillatory motion. The period of

a pendulum was used to measure time in old wall clocks. This motion can be
analyzed as simple harmonic motion under certain conditions.

A mass m is tied to the end of a string with length L . Let us pull the string
by angle θ from the vertical direction and release it. The forces acting on the
rope at any instant are shown in Figure 9.7.

The tension force T has no e�ect on the motion, because it is along the string.
However, the weight mg has a component in the tangential direction to the circle
with radius L . The force that moves the mass along the path is the force mg sin θ .

Figure 9.7: Simple pendulum.When writing Newton’s law along the tangent, we choose the direction
towards which the angle θ increases as positive. If we also write acceleration as
the derivative of velocity, we get

Ft = mat

−mg sin θ = m
dv
dt

We write the velocity v in terms of angular velocity as the mass performs circular
motion with radius L . The angular velocity is the derivative of the angle θ :

v = Lω = L
dθ
dt

Substituting this expression and arranging the terms, we get

− mg sin θ = mL
d2θ

dt2 → θ′′ +
g

L
sin θ = 0

This equation looks similar to Eq. (9.1), which we found for harmonic motion of
the mass-spring system, except that it is written for the angle θ . Also, we have
sin θ instead of θ , and therefore we cannot write the solution directly.
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However, if we consider oscillations with small amplitudes, we can approxi-
mately take sin θ ≈ θ . Then, we obtain the simple harmonic motion equation for
the angle θ :

θ′′ +
g

L︸︷︷︸
ω2

θ = 0 (9.22)

Comparing this expression with the equation (9.1), the coe�cient of the term θ

becomes the square of angular frequency ω2 . From here, we �nd the period T of
the pendulum using the relation T = 2π/ω :

T = 2π

√
L
g

(Period of simple pendulum) (9.23)

The maximum angle θmax is used instead of the amplitude A when writing the
pendulum motion equation. Accordingly, the solution of pendulum motion is

θ = θmax cosωt (9.24)

and is valid for oscillations with small angles. Notice that Eq. (9.23) for the period
of pendulum is independent of mass and amplitude. This property was used in
the designing of clocks for centuries.
Physical Pendulum

The simple pendulum is an ideal case. Actually, every rigid body can perform
pendulum motion. A rigid body that can rotate about an axis that is not through
the center of mass is called a physical pendulum. The pendulums used in wall
clocks and in the industry are physical pendulums.

Consider a rigid body with mass m and moment of inertia Icm with a rotation
axis a distance d from its center of mass (Figure 9.8). Only the mg sin θ component
of the weight causes the rotation motion.

Choosing the positive direction towards which the angle θ increases and
writing the net torque with respect to the center of rotation O , we get,

Figure 9.8: Physical pendulum.
τo = Ft d = −mg sin θ d = I α

If we write the angular acceleration α as the second derivative of the angular
position θ and arrange the terms, we get

θ′′ +
mgd

I
sin θ = 0

We again use the approximate value sin θ ≈ θ for small angles:

θ′′ +
mgd

I︸︷︷︸
ω2

θ = 0 (9.25)

We again obtain the form of a simple harmonic motion equation. According to
this equation, the coe�cient of the term θ will be angular frequency ω2 . We get
the formula for period using T = 2π/ω :

T = 2π

√
I

mgd
(Period of physical pendulum) (9.26)
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Note that the moment of inertia I in this formula is with respect to the axis of
rotation O. We use the parallel axis theorem to relate it to the Icm values given in
the tables (Chapter 7):

I = Icm + m d2

Example 9.9

We want to construct a simple pendulum with period 1 s .
(a) What length of string should be used?
(b) What length would be needed on planet Jupiter, where

gravitational acceleration is 24 m/s2 ?

Answer
We solve the formula (9.23), which we found for the period
of a pendulum, for the length L :

T = 2π

√
L
g
→ L =

gT
4π2

We use the values T = 1 s and g = 10 :
L =

10 × 1
4π2 = 0.25 m

(b) We can �nd the length of the pendulum on Jupiter by
taking g = 24 in the same formula:

L =
24 × 1

4π2 = 0.60 m .

Example 9.10

A physical pendulum is constructed by hanging a rod with
length L=60 cm and mass m from one of its ends.
(a) Calculate the period of the oscillations.
(b) At what distance from its center of mass should it be hung

for the period to be 2 s?

Answer
(a) The moment of inertia of the rod with respect to its center
of mass is Icm = 1

12 mL2 . We had previously found its mo-
ment of inertia with respect to one end to be 1

3 mL2 using the
parallel axis theorem. Therefore, if we calculate the period
for d = L/2 using the formula (9.26), we get

T = 2π

√
I

mgd
= 2π

√
mL2/3
mgL/2

= 2π

√
2L
3g

T = 2π

√
2 × 0.60
3 × 10

=
2π
5

= 1.26 s .

(b) If we write the value I = Icm +md2 for the axis at distance
d and then solve for d , we get

T = 2π

√
1

12 mL2 + md2

mgd
→ d2 −

gT 2

4π2 d +
L2

12
= 0

Substituting T = 2 s and the other numerical values, we get
d2 − d + 0.03 = 0

The two solutions to this equation are d = 0.03 and 0.97
and the solution greater than L = 0.6 is not taken into con-
sideration. Therefore, the solution is as follows:

d = 0.03 m

9.3 DAMPED HARMONIC MOTION

An oscillating body left to itself will stop after some time. If a swing is not
pushed, its amplitude gradually decreases and then stops. The energy of a mass
attached to a spring decreases due to friction. However, we sometimes deliberately
want the oscillation to stop. For example, when a car travels over a bump, the
passengers are protected by oscillations resulting from the springs in the shock
absorbers that last some reasonable time. Sometimes, we do not want oscillations
to last long. The needle of a bathroom scale should stop without oscillating too
much.

Therefore, the damping e�ect should also be taken into consideration in a
real oscillatory motion. In the simplest case, let us reconsider a mass attached to
a spring, but this time, let us place the mass inside of a box �lled with oil. The
viscosity or the friction of the oil during the motion of the mass will provide the
necessary damping.

In liquids, the friction force is proportional to the velocity of the moving
object. We can feel this when trying to walk in the sea. We can move easily with
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slow steps, but the resistance of the water suddenly increases when we try to run.
Using Fd to show this friction force, we get

Fd = −b v (9.27)

and the constant b is called the damping coe�cient. The negative sign in this
expression shows that the force is always in the opposite direction to the velocity.

Figure 9.9: Damped oscillator.
In this new setup, there are two forces acting on the mass m (Figure 9.9): The

spring force is F and the friction force is Fd . Let us write Newton’s law:

F + Fd = ma

−kx − bv = m
d2x
dt2

Let us rearrange the terms and write the di�erential equation of motion:

d2x
dt2 +

b
m

dx
dt

+
k
m

x = 0 (9.28)

We see that a new term with a �rst derivative is added.
We can likewise guess the solution to this equation without going into the

topic of di�erential equations. In simple harmonic motion, we had found the
solution by guessing that cosine and sine are the functions proportional to their
own second derivative. Here, we have the additional friction term with the �rst

Figure 9.10: Damped harmonic
motion. It performs sinusoidal
oscillations as it decreases expo-
nentially.

derivative. Likewise, let us consider which function is proportional to its own
derivative. This is the exponential function. Therefore, we look for a solution
that includes both behaviors simultaneously, in other words, the product of
the exponential and cosine functions. We can then determine the necessary
coe�cients by requiring that this solution satisfy the equation. Let us directly
write the solution here without going into too much detail of this long operation:

x = A e−(b/2m) t cos

√
ω2
0 −

b2

4m2 t with (ω2
0 = k/m)) (9.29)

We can check that this solution satis�es Eq. (9.28). The parameter ω2
0 = k/m is

just the angular frequency of the simple oscillator with no damping.

Let us examine what types of motion this expression involves:
• As shown in Figure 9.10, this is a sinusoidal motion whose amplitude de-

creases exponentially over time.
Figure 9.11: Critically damped
and overdamped oscillations.

• It is easy to see that this equation reduces to simple harmonic motion if
friction is zero, in other words, if b = 0 .

• Critical damping: When the argument of the cosine is zero, we get cos 0◦=1
and the amplitude decreases exponentially without the object making any
oscillation. The following must be true for this to happen:

ω2
0 −

b2

4m2 = 0 =⇒ b =
√

4mk

No oscillation is observed for a coe�cient of friction b above this limiting
value and the object exponentially comes to rest. In this case, it is said to be
overdamped.
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Regardless of the type of damping, the mechanical energy of the system
vanishes at the end and all of the energy is converted into heat. An important
application of damped motion in technology is the shock absorber. It provides
for easy driving by preventing vibrations on cars and motorcycles (Figure 9.12).
Large shock absorbers are used to dampen vibrations caused by earthquakes in
modern buildings and bridges.

Figure 9.12: The shock ab-
sorber of a motorcycle.9.4 DRIVEN HARMONIC MOTION – RESONANCE

Did you ever think about how we push a child on a swing? We push the
swing gently at the end of each oscillation. In other words, we apply a periodic
force. And to do this, we wait for the instant when the swing is about to go back.
In other words, we apply a force in phase with the swing.

When an external is force is applied on a harmonic oscillator, the e�ect of
friction is partly compensated and much richer behaviors are observed. Let us
again use the setup of the damped motion. This time, we apply an external force
Fa cosωt with angular frequency ω (Figure 9.13).

Figure 9.13: Oscillator driven
by a periodic force.

We write Newton’s law for the sum of the three forces acting on the system:

F + Fd + Fa cosωt = ma

−kx − b
dx
dt

+ Fa cosωt = m
d2x
dt2

Let us rearrange the equation using the expression k/m = ω2
0 :

d2x
dt2 +

b
m

dx
dt

+ ω2
0 x = Fa cosωt (9.30)

This time, we have a new term that is not dependent on the unknown x , but is
rather a function of time.

Again, we shall only write the solution of this equation without going into
its explicit solution:

x = A cos(ωt + φ) (9.31)

A =
Fa/m√

(ω2 − ω2
0)2 + b2ω2/m2

(9.32)

Let us emphasize the important properties of the driven harmonic motion:
• The motion is again simple harmonic motion, due to the cosωt term. Its

angular frequency is equal to the angular frequency of the driving force and
follows it with a phase di�erence.

• The most important property is that the amplitude A is dependent on the
frequency of the applied force. This amplitude is shown in Figure 9.14 as a
function A(ω) .

• Resonance. ω0 =
√

k/m is determined by the properties of the spring and
mass that constitute the oscillator and is called the natural frequency. The
frequency ω of the external force can be arbitrarily varied. Figure 9.14: Variation of ampli-

tude with respect to external fre-
quency in driven harmonic mo-
tion.

As seen in the �gure, the amplitude of the oscillator increases enormously as
ω→ ω0 . This is called resonance. It is surprising that it has a large impact
even if the amplitude Fa of the external force is small.
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Resonance is a very important phenomenon in everyday life and in technology.
In some cases, it is completely intentional:
• In musical instruments, each string is tuned such as to resonate at a di�erent

frequency.
• When searching for a radio station, the receiver is made to resonate with the

broadcast frequency of the transmitter that we want.
• A microwave oven emits electromagnetic waves that resonate the water

molecules inside of food.
• Magnetic Resonance. The neutrons and protons in the nucleus of all atoms

have a magnetic property. They receive and return energy only at certain
frequencies to and from external magnetic �elds. Certain atoms are made
to resonate by applying a magnetic �eld close to their frequencies, and the
location of the radiation that they emit can be measured to map the pro�le
of organs.

Figure 9.15: Magnetic reso-
nance imaging (MRI) device.

Sometimes, resonance is unwanted:
• Soldiers are not marched in unison when crossing a bridge. In this phe-

nomenon, discovered during World War I, the periodic steps of soldiers may
cause a bridge to resonate and collapse.

• Some accessories and equipment made of crystal glass may resonate and
break due to a surrounding vibration.

• Attention is paid to ensure that the natural vibration frequencies of buildings
are not close to earthquake or wind gust frequencies, because, even if the
building is strong, it may resonate and collapse. One example of this was
the collapse of the Tacoma River Bridge in the United States due to the
periodic wind gusts. In order to prevent this hazard, the natural frequencies
of buildings can be determined and their amplitude can be reduced using
shock absorbers.

Multiple-choice Questions

1. Which is incorrect for simple harmonic motion?
(a) The number of oscillations per unit time is the fre-
quency.
(b) The time for one oscillation is the period.
(c) The maximum oscillation distance is the amplitude.
(d) Acceleration is constant.

2. The angular frequency ω is equal to which of the fol-
lowing?
(a) 2π/ f (b) 2π/T (c) 2π/A (d) 2πA

3. If a harmonic oscillator passes through the equilibrium
position at time t = 0 , which of the following describes
its motion?

(a) A cosωt
(b) A sinωt
(c) A tanωt
(d) A cos(ωt + π/3)

4. If the amplitude of a harmonic oscillator with total en-
ergy E is doubled, what will be its total energy?

(a) E/2 (b) 2E (c) 4E (d) E/4

5. Which is incorrect for simple harmonic motion?
(a) Velocity is zero when the position is maximum.
(b) Position is zero when the velocity is maximum.
(c) Acceleration is zero when the velocity is maximum.
(d) Acceleration is zero when the position is maximum.

6. Which of the following are incorrect for the period of a
mass+spring system?

I. It depends on the amplitude.
II. It depends on the mass.
III. It depends on the spring constant.
IV. It depends on the phase angle.

(a) I & III (b) I & IV (c) II & III (d) II & IV
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7. By what factor will the period of a pendulum increase if
its length is increased by a factor of 4?

(a) 2 (b) 4 (c) 6 (d) 8

8. Which is incorrect for the energy of a harmonic oscilla-
tor?

(a) Potential energy is maximum at the maximum posi-
tion.
(b) Kinetic energy is maximum at the maximum veloc-
ity.
(c) Kinetic+potential energy is constant.
(d) Kinetic energy is zero at the equilibrium position.

9. In a mass+spring system, the spring constant is doubled
and the mass is halved. By what factor will the period
decrease?

(a) 2 (b) 4 (c) 6 (d) 8

10. The oscillation period of a simple pendulum depends on
which of the following?

(a) Mass
(b) Amplitude
(c) Length
(d) Kinetic energy

11. A simple pendulum used as a clock is lagging. How can
you �x it?

(a) Increase its length.
(b) Decrease its length.
(c) Increase its mass.
(d) Decrease its mass.

12. While a simple pendulum is oscillating, half of the mass
on its end breaks o� and falls. How will the motion
change?

(a) It will get slower.
(b) It will get faster.
(c) It will not change.
(d) It will stop.

13. The period of a harmonic oscillator is doubled. Which
of the following is correct?

(a) Its frequency will double.
(b) Its angular frequency will be halved.
(c) Its amplitude will double.
(d) Its amplitude will be halved.

14. Which is incorrect when the amplitude of a harmonic
oscillator is doubled?

(a) Maximum velocity will double.
(b) Maximum acceleration will double.
(c) Energy will increase by a factor of 4.
(d) Period will increase by a factor of 4.

15. Which of the following will not help to increase the
maximum velocity of a mass+spring system?

(a) Increasing its amplitude.
(b) Increasing its angular frequency.
(c) Increasing its energy.
(d) Increasing its phase angle.

16. How will a pendulum clock behave when taken to the
surface of the Moon?

(a) It will lag.
(b) It will run too fast.
(c) It will not change.
(d) It will stop.

17. What is the source of damping in damped harmonic
motion?

(a) Spring force.
(b) Friction force.
(c) Amplitude.
(d) Potential energy.

18. The period of a physical pendulum does not depend on
which of the following?

(a) Moment of inertia.
(b) Mass.
(c) Distance between the axis and the center of mass.
(d) Amplitude.

19. Which will change when we choose another starting
time t = 0 in a harmonic oscillator?

(a) Amplitude
(b) Frequency
(c) Energy
(d) Phase angle

20. An oscillator consisting of a mass+spring system is sup-
plied with a periodic external force. Which of the fol-
lowing is correct?

(a) It will approach resonance as the amplitude of the
external force increases.
(b) It will approach resonance as the amplitude of the
external force decreases.
(c) It will approach resonance as the external frequency
approaches the natural frequency.
(d) No resonance will be observed.
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Problems

9.1 Simple Harmonic Motion

9.1 The position of an object with mass m=2 kg undergoing
simple harmonic motion varies with time as,

x = 3 cos 4π t (meters) .
(a) What are the amplitude, angular frequency and period
of the motion? (b) What is the spring constant? (c) What is
the position of the object at time t=1/24 s? (d) How many
seconds does it take for the object to reach the positions
x = −3 m and x = 1.5 m?

[A: (a) A = 3 m , ω = 4πHz , T = 0.5 s , (b) k=320 N/m ,
(c) 2.6 m , (d) 1/4 and 1/12 s .]

9.2 A mass m=0.5 kg attached to a spring completes 25 cy-
cles in 10 s . (a) What are its period, angular frequency and
spring constant k ? (b) This object is stretched by 40 cm from
its equilibrium position and released at the time t=0 . Write
the equation for the simple harmonic motion equation.
[A: (a) T=0.4 s , ω=5πHz , k=125 N/m , (b) x=0.4 cos 5π t .]

9.3 A mass m=3 kg attached to a spring with spring constant
k=75 N/m is pulled by 50 cm from its equilibrium point and
released. (a) What will be its maximum velocity and accel-
eration? (b) What will its velocity and acceleration be as it
passes through position x = 20 cm?

[A: (a) 2.5 m/s , 12.5 m/s2 , (b) 2.3 m/s , −5 m/s2 .]

9.4 The angular frequency of an object performing simple
harmonic motion is 2 Hz . This object passes through position
x = 1 m with velocity v = 4.8 m/s . (a) What is the amplitude
of the motion? (b) What is its maximum velocity?

[A: (a) 2.6 m , (b) 5.2 m/s .]

Problem 9.5
9.5 The �gure above shows the motion of a mass m = 2 kg
attached to a spring. (a) Find the angular frequency and the
spring constant. (b) Write the equation of this motion.

[A: (a) ω = π/4 , k = 1.25 N/m , (b) x = 0.8 sin πt/4 .]

Problem 9.6
9.6 Write the equation of the simple harmonic motion shown
in the �gure. [A: x = 0.05 cos(πt−37◦) .]

9.7 A system with m=2 kg attached to a spring with spring
constant k=72 N/m has a total energy of 900 J . (a) What
is the amplitude of the oscillation motion? (b) At a certain
moment, the kinetic energy is 500 J . What is the extension
of the spring at that moment? [A: (a) 5 m , (b) 3.3 m .]

9.8 When the body of a car with mass 1200 kg is pressed
from above and released, it vibrates at a frequency of 3 Hz .
What will the vibration frequency of the car be if 5 people,
each weighing 70 kg , get into the car? [A: 2.6 Hz .]

9.9 A system performs simple harmonic motion. (a) At which
x/A ratio will the kinetic energy be twice the potential en-
ergy? (b) What will the ratios of the kinetic and potential
energies be when x = A/5?

[A: (a) x/A = 1/
√

3 , (b) K/U = 24 .]

9.10 A harmonic oscillator with angular frequency 3 Hz
is pulled by 5 m from its equilibrium position and released.
The time t=0 is initiated as it passes through position x=4 m .
Find the phase angle and write the equation of the harmonic
motion. [A: x = 5 cos(3t + 37◦) .]

9.11 The equation of a harmonic motion is given as
x = 4 cos(πt − π/3)

(a) What is its position at the start? (b) When will it reach
the maximum position? [A: (a) 2 m , (b) 0.33 s .]

Problem 9.12
9.12 A bullet with mass m=50 g and velocity v = 200 m/s
hits and embeds in a wooden block with mass M=950 g ,
which is attached to a spring with constant k=64 N/m . Cal-
culate the angular frequency and amplitude of the resulting
harmonic motion. [A: ω = 8 Hz , A = 1.25 m .]

Problem 9.13
9.13 A mass m=1 kg is placed on the plate of a spring with
constant k=50 N/m that can vibrate in the vertical direction.
How large can the amplitude of the harmonic motion be such
that the mass does not leave the plate? The mass of the plate
can be neglected. (Hint: Consider the maximum acceleration
of the harmonic motion.) [A: A 6 0.2 m .]
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Problem 9.14
9.14 A mass m1=1 kg is placed on another mass m2=2 kg
lying on a frictionless horizontal plane. The friction coef-
�cient between the two blocks is µ=0.5 . The mass m2 is
attached to a spring with spring constant k=60 N/m and set
into harmonic motion. What is the maximum amplitude such
that both masses can oscillate together without the top mass
sliding? (Hint: Compare the maximum acceleration that can
be given to the mass m1 solely by the friction force and the
maximum acceleration of the harmonic motion.)

[A: A 6 0.25 m .]

9.2 Pendulum Motion
9.15 The combined e�ect of the centripetal force at the equa-
tor and the oblate shape of the Earth result in a g=9.78 m/s2

at the equator and a g=9.83 m/s2 at the poles. By how much
will a simple pendulum clock with a period of 1 s on the
equator lag behind on the poles in 1 day? [A: 220 s .]

9.16 A simple pendulum with length 2.5 m is pulled by 5◦

from its equilibrium position and released. (a) In how many
seconds will it reach its equilibrium position? (b) In how
many seconds will it reach the angle θ = 2.5◦ ?

[A: (a) T/4 = π/4 = 0.79 s , (b) π/6 s .]

Problem 9.17
9.17 A stick with mass m and length L=1.20 m can rotate
about an axis O located at distance L/4 from one end. Calcu-
late the period of the pendulum motion. [A: 1.67 s .]

Problem 9.18
9.18 A ring with mass M and radius R is hung on a nail, as
shown in the �gure. Show that the period of the harmonic
motion about the axis O is,

T = 2π

√
2R
g

9.19 When a rigid body with mass m=1 kg is oscillating
about an axis located at a distance of 20 cm from its center
of mass, its period is 2 s . Calculate the moment of inertia of
the rigid body with respect to its center of mass.

[A: 0.16 kg·m2 .]

Problem 9.20
9.20 Calculate the period of oscillation of the solid sphere
with radius R=20 cm attached to the end of a rope with length
L=1 m , as shown in the �gure. The moment of inertia of the
solid sphere with respect to its center of mass is Icm= 2

5 MR2 .
[A: 2.2 s .]



10
WAVES

Sur�ng is the art of riding a
wave. The size of the swell
(ocean surface wave) depends
on the strength of the wind and
the area of open water.
What really moves forward in a
wave motion? And what does a
wave carry?

We all know how waves are formed by a pebble thrown into a still pond. The
ripples move in ever growing circles. Likewise, waves propagate along a rope
when we shake it from one end. The propagation of any change, vibration or
perturbation in a medium is called awave. There is a broad range of wave motions
in our everyday life and in nature: Sound waves, water waves, electromagnetic
waves that form light and radio-TV signals, etc.

The source of all of these waves is a vibration: we shake a rope, and a wave
propagates along the rope; a tuning fork is set to vibrate, and sound waves appear,
etc.

Notice that it is not the matter itself but the disturbance that propagates. If
you examine a bottle �oating on wavy water, you will notice that the bottle goes
up and down as the wave passes, but does not move forward with the wave.

Figure 10.1: A bottle does not
move forward as a wave does, it
only moves up and down.

What is it that moves forward in wave? It is energy and momentum that prop-
agate. Each water molecule transfers the energy and momentum that it receives
to the next one as it goes up and down. Energy and momentum transferred in a
certain harmony mediate the propagation of waves.

161© Springer Nature Switzerland AG 2020 

B. Karaoglu, Classical Physics, https://doi.org/10.1007/978-3-030-38456-2_10

https://doi.org/10.1007/978-3-030-38456-2_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38456-2_10&domain=pdf


162 10. WAVES

10.1 GENERAL PROPERTIES OF WAVES

Waves can be classi�ed according to their various features. According to the
type of perturbation, they can be separated into two distinct groups (Figure 10.2):

Figure 10.2: Transverse and lon-
gitudinal waves.

• Transverse waves: The perturbation is perpendicular to the wave’s direc-
tion of propagation. The waves on a string are a good example of this type.

• Longitudinal waves: The perturbation is along the wave’s direction of
propagation. When we compress and release a spiral spring (Figure 10.2), a
wave is observed to propagate along the spring.
Sound waves are good examples of longitudinal waves. Sound waves consist
of the back and forth motion of air molecules.

Figure 10.3: Sound wave is a
longitudinal wave.

Another classi�cation is according to the medium in which the wave propagates:
• Mechanical waves: A �exible or elastic medium is needed for the wave

to propagate. The wave on a string propagates by moving the string. A
sound wave is produced by the density �uctuations in the surrounding air.
Mechanical waves must have a medium in which to travel.

• Electromagnetic waves: They can propagate in empty space and need no
medium. In the modern view, an electromagnetic �eld �lls all space, and
perturbations in this electromagnetic �eld form the wave.

We will discuss only mechanical waves in this chapter. Electromagnetic waves
will be mentioned in the discussion on light.

Another classi�cation of waves is in terms of periodicity:
• Periodic wave: The perturbation propagates by repeating itself in time. For

example, if one end of a string vibrates, the wave propagating along the
string will be periodic.

• Wave pulse: This represents the propagation of a single disturbance. For
example, if we shake the end of the string once, we will only observe the
progress of this perturbation.

Figure 10.4: Impulse wave and
periodic wave.

Regardless of type, every wave has a propagation speed, which is the rate at
which the perturbation propagates. This speed, denoted by v , will be constant if
the medium is homogeneous, and is independent of the cause of the waves.
Wave Speed

The wave speed in a medium depends on the various properties of said
medium, such as density, heat, pressure, tension in the rope, etc. It can be
calculated for a particular type of wave and medium. Without considering how
these speeds are calculated, each of which requires a di�erent method, let us only
give the results:
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• Wave speed on string: The linear mass density of a string is de�ned as
µ = m/` (kg/m). Accordingly, if a tension F is applied between the two ends
of a string, the wave speed is given with the formula,

v =

√
F
µ

(Wave speed on a string) (10.1)

(The tension is indicated here as F to prevent confusion with the period T .)
The more tautly the string is stretched, the faster the wave speed will be.
Wave speed is lower in strings made of denser materials.

• Speed of sound in air: If a gas with mass density ρ (kg/m3) has pressure
P , the speed of sound waves in this gas is

v =

√
γP
ρ

(Speed of sound in air) (10.2)

Here, γ is a dimensionless constant that describes the thermodynamic prop-
erties of the gas and is approximately γ = 1.4 for air.

• Liquid waves: Wave speed depends on the wavelength λ and the depth h
of the liquid:

v =


√
gh (In shallow waters : h � λ)√
gλ

2π
(In deep waters : h � λ)

(10.3)

• Electromagnetic waves: The speed of electromagnetic waves in vacuum is
equal to the speed of light c :

v = c = 2.997 × 108 m/s

The speed of electromagnetic waves decreases when they enter a material
medium. Electromagnetic wave speed in a medium with refractive index n
is v = c/n .

Wave Function
What is the mathematical expression of a propagating wave? Figure 10.5

shows the images of a pulse wave propagating with speed v in the +x direction
at two di�erent times. Let the pro�le of the string be the function f (x) at time
t = 0 . What will be the mathematical expression of this wave at a later time t ?

Figure 10.5: The image of a
wave propagating at speed v at
various times.

Note that the pro�le given with the function f is only displaced without
changing its form. The wave at time t = 0 is displaced by a distance +vt at time t .
Therefore, it is su�cient to write the same function by displacing it by +vt . And
this becomes the function f (x − vt) . (You may check this with a simple function:
The function y = x crosses the x -axis at 0 , but the function y = x − a crosses it
at +a and the function y=x−2a crosses it at +2a . . . )
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Therefore, every function in the form f (x − vt) represents a wave propagating
in the +x direction with speed v .

The reverse is also true: Every function in the form f (x + vt) represents a
wave propagating in the −x direction with speed v .
Sinusoidal Wave

When we vibrate the free end of a string in a periodic fashion, a sinusoidal
wave is produced that propagates along the string. Figure 10.6 shows the dis-
placement along the y -axis of a string extended along the x -axis. This pro�le
can be shown as a sine or cosine wave. Now let us examine the main parameters
of sinusoidal waves.

Figure 10.6: The distance be-
tween two consecutive crests is
the wavelength λ in a sinusoidal
wave.

The distance between two consecutive crests (maximum points) of a wave is
called the wavelength and is indicated with λ (lambda).

If this wave is generated from a source that vibrates with a period T and the
resulting wave propagates with speed v , the distance λ between the two crests
can be expressed as follows:

wavelength = speed × (duration of one vibration)
λ = vT (10.4)

The maximum displacement of a wave is called the amplitude A . Let us
write the pro�le of the string at t = 0 as a sine function. This function with
wavelength λ and amplitude A is

y = A sin 2π
x
λ

(10.5)

The factor 2π was added to ensure that the wave is periodic at multiples of λ .
Now, let us turn this string pro�le at t = 0 into a wave that propagates at

speed v . We have seen how to do this above: Replacing the function f (x) with
f (x−vt) produces a function that moves in the +x direction at speed v . Therefore,
a sinusoidal function propagating at speed v can be written as:

y = A sin
2π(x − vt)

λ

We can substitute v as v/λ = 1/T to make this expression more symmetrical and
�nd the sinusoidal wave expression as follows:

y(x, t) = A sin 2π
( x
λ
−

t
T

)
(Sinusoidal wave function) (10.6)

The displacement y(x, t) is a function with two variables, depending on both
position x and time t . This expression clearly shows that the wave is periodic in
both space and time: As sin(α + 2π) = sinα , the displacement y of the positions
x and x + λ will always be equal; likewise, the displacement at times t and t + T
will be equal.
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For another form of the wave equation, a quantity called a wavenumber and
indicated with k is de�ned as follows:

k =
2π
λ

(wavenumber) (10.7)

The wavenumber is a measure of the number of wavelengths per unit length, but
gives it in terms of 2π . For example, if the wave length is 1 m, , 1

2 m, 1
3 m, . . . ,

then the wavenumber will be k = 2π, 4π, 6π, . . . .
On the other hand, let us remember the angular frequency ω that we know

from Chapter 9:
ω =

2π
T

= 2π f (10.8)

The sinusoidal wave is written as follows in terms of these two quantities:

y(x, t) = A sin(kx − ωt) (Sinusoidal wave functions) (10.9)

If the wave is propagating in the −x -direction, we take A sin(kx + ωt) .
This expression is very convenient in calculations, because the coe�cients of

x and t can be immediately identi�ed as k and ω . Then, other quantities can be
calculated in terms of ω and k as:

v =
ω

k
, λ =

2π
k
, T =

2π
ω

(10.10)

If these wave functions also have a phase angle φ , then the equation becomes
y = A sin(kx − ωt + φ) . We will add the phase angle where necessary.

Example 10.1

The speed of sound in air is 340 m/s . The note A (La) com-
ing out of a musical instrument has a frequency of 440 Hz .
Calculate the wavelength of the note A (La).

Answer
We write the relation between frequency and wavelength:

λ = vT =
v

f
=

340
440

= 0.77 m = 77 cm .

Example 10.2

Two strings, each with length L=1 m , are attached end to end.
The linear density of the �rst is µ1=0.1 kg/m and that of the
second is µ2=0.2 kg/m . The tension F=40 N is applied to the
outer ends of the strings. How much time does it take for a wave
to travel from end A to end B on this composite string?

Answer
We �rst calculate the wave speed for each string with
Eq. (10.1):

v1 =
√

F/µ1 =
√

40/0.1 = 20 m/s
v2 =

√
F/µ2 =

√
40/0.2 = 14 m/s

A wave with speed v travels the distance L in time L/v .
Accordingly, we calculate the total time as follows:

t = t1 + t2 =
L
v1

+
L
v2

=
1
20

+
1

14
= 0.12 s

Example 10.3

The sinusoidal wave on a string with linear density µ=0.1 kg/m
is given as

y(x, t) = 0.03 sin(5πx − 40t) (meters)
(a) What are the wave amplitude, wavelength, period and

wave speed?
(b) What is the tension in the string?

Answer

(a) We can directly identify the following quantities, as the
wave is given in the form A sin(kx − ωt) :

A = 0.03 m, k = 5πm−1, ω = 40 Hz

The others are found using Eqs. (10.10):

v =
ω

k
=

40
5π

= 2.5 m/s



166 10. WAVES

λ =
2π
k

=
2π
5π

= 0.4 m

T =
2π
ω

=
2π
40

= 0.05π s

(b) We use Eq. (10.1) for the wave speed on the string:

v =
√

F/µ → F = µ v2

We substitute the numerical values:
F = 0.1 × (2.5)2 = 0.63 N .

Example 10.4

Determine the direction of propagation and wave speed for the
following wave functions.
(a) y = 2 sin(3x − 18t)
(b) y = 3 cos(4t − 10x)
(c) y = 4 sin(3x + 21t)

Answer
If a function has the form f (x − vt) , then it is a wave propa-
gating in the +x -direction with speed v . However, if its form

is f (x + vt) , then it propagates in the −x -direction.
We then convert the given functions into this form (without
considering the amplitudes or the signs):
(a) sin(3x − 18t) = sin[3(x − 6t)]

→ v = 6 m/s, in the + x direction
(b) cos(4t−10x) = cos[−(4t−10x)] = cos[10(x− 2

5 t)]
→ v = 2

5 m/s, in the + x direction
(c) sin(3x + 21t) = sin[3(x + 7t)]

→ v = 7 m/s, in the − x direction

Example 10.5

The �gure shows the pro�le of a sinusoidal wave on a string at
times t = 0 and t = 0.6 s . Find the wave function.

Answer
The amplitude and wavelength can be immediately identi�ed
by examining the �gure:

A = 0.20 m , λ = 0.60 m
To �nd the wave speed, let us note that the point at the origin
at time t = 0 was displaced by 1.80 m at time t = 0.6 s .
Accordingly, we calculate the wave speed as follows:

v =
1.80
0.6

= 3 m/s

From here, we calculate the period:

T =
λ

v
=

0.6
3

= 0.2 s .
We �nd the wave function based on this information:

y = A sin 2π
( x
λ
−

t
T

)
= 0.2 sin 2π

( x
0.6
−

t
0.2

)
Example 10.6

Two ends of a string with linear density µ=0.25 kg are stretched
with a pair of forces F=100 N . The string is transversely pulled
from one end by 3 cm and released. It vibrates with a frequency
of 8 Hz .

(a) Find the wave speed, period and wavelength.
(b) Write the equation of the sinusoidal wave produced.

Answer
(a) We use Eq.(10.1) for speed:

v =

√
F
µ

=

√
100
0.25

= 20 m/s .

We calculate the period and the wavelength:

T =
1
f

=
1
8

= 0.125 s

λ = vT = 20 × 0.125 = 2.5 m .
(b) We use Eq. (10.6), which expresses the wave function in
terms of T and λ :

y = A sin 2π
( x
λ
−

t
T

)
= 0.03 sin 2π

( x
2.5
−

t
0.125

)

10.2 INTERFERENCE, REFLECTION AND TRANSMISSION OF WAVES

Superposition Principle
What will be the combined e�ect of two or more waves in the same medium?

For example, the sounds from many musical instruments in an orchestra arrive at
our ears simultaneously. Likewise, electromagnetic waves from many TV stations
a�ect the television antenna simultaneously.

The superposition principle determines the combined e�ect of waves:
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Superposition Principle

The total e�ect of two or more waves propagating in the same
medium is equal to the algebraic sum of their wave functions:

y(x, t) = y1(x, t) + y2(x.t) (10.11)

We can explain the source of this principle in mathematical terms as follows:
Functions in the form f (x−vt) satisfy a di�erential equation that has the following
property: If y1 and y2 are two separate solutions, then the function y1 + y2 is
also a new solution. Experiments show that the principle is true for waves with
small amplitudes.

Let us emphasize the most important conclusions to be drawn from the
superposition principle:
• If two waves reach a point with the same sign, the displacement of that point

increases. This is called constructive interference (Figure 10.7a).

Figure 10.7: (a) Constructive in-
terference and (b) Destructive in-
terference in the superposition of
two waves.

• If the algebraic sum of two waves at a point is zero, then that point will
remain motionless. This is called destructive interference (Figure 10.7b).

• Waves continue along their paths with their former shapes after overlapping
and separating.

Interference
Let us examine in detail the constructive and destructive interference that

we mentioned above. Consider two sinusoidal waves propagating in the same
medium and in the same direction (Figure 10.8). In the simplest case, let the
amplitudes, wavelengths and frequencies of both waves be equal. Let the only
di�erence between them be a phase di�erence φ on one of the waves:

y1 = A sin(kx − ωt)

y2 = A sin(kx − ωt + φ)

According to the superposition principle, the total wave in the medium will be
Figure 10.8: The interference
of two identical waves with a
small phase di�erence.

the algebraic sum of these two:

y = y1 + y2 = A sin(kx − ωt) + A sin(kx − ωt + φ)

If we apply an identity from trigonometry on this sum, we get

sin a + sin b = 2 sin
(
a + b

2

)
cos

(
a − b

2

)
sin(kx − ωt) + sin(kx − ωt + φ) = 2 sin(kx − ωt + φ/2) cos(−φ/2)
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Since cos(−a) = cos a , the total wave function can ultimately be written as
follows:

y =
[
2A cos(φ/2)

]︸           ︷︷           ︸
A′

sin(kx − ωt + φ/2) (10.12)

The term sin(kx − ωt + φ/2) here shows that this expression is again a wave
propagating in the +x direction with the same wavelength and same frequency,
but with a phase di�erence of φ/2 . The factor 2A cos φ/2 at the front of this
expression is independent of x and t and is considered the amplitude of the new
wave:

y = A′ sin(kx − ωt + φ/2) with A′ = 2A cos(φ/2) (10.13)

Let us consider two special cases of the phase angle:
• If φ = 0◦ , in other words, if the two waves are in equal phase, we get

cos 0◦ = 1 . In this case, the wave function y becomes the same function
with amplitude 2A . This is called constructive interference.

• If φ = 180◦ , in other words, if the two waves are in opposite phase, we get
cos 90◦ = 0 . In this case, we get y = 0 for every value of x and t . And this
is called destructive interference.

We have considered here the interference of two identical waves as the sim-
plest case. In more general cases, interference between two waves with di�erent
wavelengths and frequencies exhibits more interesting features, as the following
example shows.
Standing Waves

Another important case of interference is that of two waves propagating
in opposite directions. Let us consider two waves with equal amplitude, equal
wavelength and equal frequency, one traveling in the +x -direction and the other
in the −x -direction:

y1 = A sin(kx − ωt) (wave traveling in the +x-direction)
y2 = A sin(kx + ωt) (wave traveling in the −x-direction)

According to the superposition principle, the total wave function will be

y = y1 + y2 = A sin(kx − ωt) + A sin(kx + ωt)

Figure 10.9: Standing wave pro-
duced by two waves propagating
in opposite directions.

If we again use the trigonometric identity above for sin a+ sin b ,

y = 2A sin kx sinωt (10.14)

This result shown in Figure 10.9 is called a standing wave. Let us emphasize the
important features of standing waves:
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• This wave is no longer a propagating wave, because it does not have the
form f (x± vt) . If you examine the wave produced on a guitar string, you will
notice that it does not propagate (Figure 10.10). Each point makes a vibration
motion with a di�erent amplitude. This is the vibration motion cosωt with
amplitude A′ = 2A sin kx :

y = [2A sin kx]︸       ︷︷       ︸
A′

sinωt

Figure 10.10: A standing wave
produced in laboratory (Harvard
Natural Sciences Lecture Demon-
strations).

• The points at certain x values do not move. These points, called nodes,
occur at the values sin kx = 0 :

sin kx = 0 −→ kx = 0, π, 2π, 2π, 3π . . .

Using the de�nition k = 2π/λ for the wavenumber, we get

x = 0,
λ

2
, λ,

3λ
2

. . . = n
λ

2
(n = 0, 1, 2, . . .) (Nodes) (10.15)

• The points at certain x values vibrate at maximum amplitude. These points,
called antinodes, occur at the values sin kx = 1 :

sin kx = 1 −→ kx =
π

2
,

3π
2
, . . .

x =
λ

4
,

3λ
4
,

5λ
4

. . . = (2n + 1)
λ

4
(n = 0, 1, 2, . . .) (Antinodes) (10.16)

Harmonics of a Musical Instrument
Waves are generated on stringed instruments like the violin or the guitar,

upon which a string has two �xed ends. According to our results above, the two
�xed ends of such a string must be a node. Therefore, on a string with length L ,
the points x = 0 and x = L should ful�ll the following condition:

sin k.0 = sin kL = 0 =⇒ kL = 0, π, 2π, 2π, 3π . . .

Writing this for wavelength λ = 2π/k we have,

L = n
λ

2
=⇒ λn =

2L
n

(n = 1, 2, 3 . . .)
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The length L of the string should accommodate half-wavelengths. According to
this result, only waves with wavelength λn can be generated in a string with two
�xed ends (Figure 10.11).

We use the formula f = v/λ to convert these into frequencies:

fn = n
v

2L
(n = 1, 2, 3 . . .) (10.17)

These frequencies that can be generated by a string with a certain length are
called natural frequencies or resonance frequencies. In musical terms, they are
called harmonics. The one with n = 1 is called the fundamental frequency
or the �rst harmonic; and fn = 2 f1, 3 f1 . . . are called the nth harmonics:

f1 =
v

2L
(The fundamental frequency or the �rst harmonic) (10.18)

Here, let us also use Eq. (10.1) v =
√

F/µ , which we previously gave for the wave
speed on a string:

fn = n f1 = n
n

2L

√
F
µ

(n = 1, 2, 3 . . .) (10.19)

When “tuning” a musical instrument, we vary the tension in the strings to ensure
Figure 10.11: Natural frequen-
cies or harmonics on a string of
length L .

that it generates standing waves at the required frequency.
Timbre: The property that distinguishes the sound of a violin from that of a

guitar is called timbre. Timbre is a result of mixing harmonics. In each instrument,
together with the fundamental frequency, a few more of these harmonics are
generated. The mixing rates of these harmonics depends on the type of musical
instrument. A di�erent harmonic mixture is generated in the violin than is
generated in the guitar.
Reflection and Transmission of Waves

What happens when a wave encounters an obstacle or reaches the boundary
between two mediums? If the second medium is also �exible, some of the wave
will be transmitted and some will be re�ected back. Let us review the general
rules of re�ection and transmission before going into their detailed calculation.

Figure 10.12 shows a wave on a string with one end �xed to the wall, with
the wave moving towards the wall. When the wave reaches the wall, it will be
fully re�ected back, because it cannot pass to the other side. However, the point
A of the string connected to the wall must always remain motionless, due to the
superposition principle. The only way to ensure this is for the re�ected wave to
have opposite phase with the incoming wave. It means that the re�ected wave is
inverted.

Figure 10.12: A wave re�ected
from a �xed end will have a 180◦

opposite phase.

Therefore, a wave re�ected from a �xed end will be inverted. Another way
to see this is as follows: When the wave hits the wall, according to Newton’s
law, the wall will push the string back with an equal and opposite force. In other
words, the wave will be pushed downwards if it tries to get displaced upwards.
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Figure 10.13: A wave re�ected
from a free end will have the
same phase.

On the other hand, the end of the string could be free to move. For example,
we can consider a ring that can slide freely up or down the wall (Figure 10.13). In
this case, the re�ection will be in the same phase, because this end of the string is
displaced in the same direction for the waves in both directions.

Figure 10.14: (a) A wave com-
ing from a denser medium will be
re�ected in the same phase. (b)
A wave trying to enter a denser
medium will be re�ected in the
opposite phase.

Apart from these two extreme cases, a wave is usually partially transmitted
into a second �exible medium and partially re�ected. Whether or not there
is a phase di�erence during the re�ection depends on the densities of the two
mediums. It gets re�ected back without phase di�erence if it comes from a denser
medium. In contrast, the re�ected wave will be inverted if transmitting into a
denser medium. Both cases are summarized in Figure 10.14.

Example 10.7

Two waves propagating on a string are given as

y1 = 3 sin(5πx − 4t)
y2 = 3 sin(5πx + 4t)

(a) Determine the nodes and antinodes of the standing wave.
(b) Calculate the amplitude at the point x = 0.05 m .

Answer
(a) The standing wave generated by the waves A sin(kx±ωt)
propagating in opposite directions was given by Eq. (10.14):

y = 2A sin kx cosωt
Therefore, the values k = 5π and ω = 4 are read from this
expression.

We �rst calculate the wavelength to �nd the nodes and antin-
odes:

λ =
2π
k

=
2π
5π

= 0.4 m .
The nodes will be located at the integer multiples of λ/2 and
antinodes at the odd multiples of λ/4 :
Nodes: x = 0, λ/2, λ, 3λ/2 · · · = 0, 0.2, 0.4 · · · m
Antinodes: x = λ/4, 3λ/4, 5λ/4 · · · = 0.1, 0.3, 0.5 · · · m
(b) The amplitude of the vibrational motion of any position
x will be the coe�cient of cosωt :

A′ = 2A sin kx = 6 sin 5πx
We �nd the amplitude by substituting the value x=0.05 :

A′ = 6 sin 5π × 0.05 = 6 sin π/4 = 6/
√

2 = 4.2 m .

Example 10.8

A tension of F = 100 N is applied on both ends of a string with
length 1 m and linear density 0.1 kg/m . What are the funda-
mental frequency (1st harmonic) and 2nd harmonic frequency
generated on this string?

Answer
Let us �rst calculate the wave speed on the string:

v =
√

F/µ =
√

100/0.1 = 33 m/s
We had previously found the formulas for the fundamental
and harmonic frequencies. However, it is more convenient to
keep in mind the wavelength condition, rather than memorize
these formulas.
The fundamental frequency should be such that a half-

wavelength can �t in the string:

L =
λ1

2
→ λ1 = 2L

Frequency can be calculated if the wavelength and speed v
are known:

f1 =
v

λ1
=

33.3
2

= 17 Hz

Likewise, two half-wavelengths should �t in the length L to
obtain the 2nd harmonic:

L = 2
λ2

2
→ λ2 = L

From here, we calculate the frequency:

f2 =
v

λ2
=

33.3
1

= 33 Hz
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Example 10.9

The wave speed on a string with length 80 cm is 240 m/s .
(a) What is the fundamental frequency?
(b) Considering that the human ear can hear sounds with a

maximum frequency of 20 000 Hz , what is the highest
harmonic that can be heard on this string?

Answer
(a) We use the formula (10.17), which gives the harmonic
frequencies:

fn = n
v

2L
(n = 1, 2, 3 . . .)

We take n=1 for the fundamental frequency:

f1 =
v

2L
=

240
2 × 0.80

= 150 Hz .

(b) We write the harmonic frequencies in terms of the funda-
mental frequency:

fn = n f1
In order to be audible by the human ear, the frequency fn
should be as close as possible to the value 20 000 Hz :

n f1 6 20 000 → n 6
20 000

150
= 133.3

The closest value to this is n = 133 :
f133 = 133 × 150 = 19 950 Hz .

Example 10.10

A guitar string with linear density µ = 0.001 kg/m and length
60 cm was tuned so that its fundamental frequency produces
the note C (Do, frequency 262 Hz ).
(a) What is the tension in the string?
(b) Where should the string be pressed so that it can produce

the note D (Re, frequency 294 Hz )?

Answer
We �rst calculate the wave speed:

v = λ f
The wavelength of the fundamental frequency is such that
λ = 2L . We can calculate the wave speed from this:

v = 2L f = 2 × 0.60 × 262 = 314 m/s
We calculate the tension F giving this speed:

v =
√

F/µ → F = µv2

F = 0.001 × 3142 = 99 N
(b) The wave speed v is the same, because the tension of the
string has not changed. However, this time, the fundamental
frequency is changed to f ′ , because the length of the string
is changed to L′ :

v = λ′ f ′ = 2L′ f ′ → L′ =
v

2 f ′
We use the frequency of the note D and the wave speed found
in item (a):

L′ =
314

2 × 294
= 0.53 m .

Accordingly, one must press at 60− 53 = 7 cm from one end
of the string.

10.3 THE DOPPLER EFFECT AND SHOCK WAVES

In this section, we will discuss two interesting e�ects caused by waves: The
Doppler e�ect is observed when the wave source or the observer is moving. A
shock wave is observed when the wave source moves faster than the wave.

Both e�ects have very signi�cant technological applications.
The Doppler Effect

Have you ever stood by a highway and listened to the sound of a car passing
by at top speed? The sound that you hear as the car approaches and the one
that you hear as it moves away have a distinguishable di�erence to the ear. The
sound has a higher pitch as the car approaches and a lower pitch as it moves
away. Expressed in terms of frequencies, the frequency of the approaching sound
is greater and the frequency of the receding sound is lesser. This is called the
Doppler e�ect.

The Doppler e�ect is observed when both the wave source and the observer
are moving. Let us �rst calculate both cases separately, then combine them
together.
Standing source, moving observer

Let us clearly designate our parameters: v is the speed of sound. fs and λs

are the original frequency and wavelength emitted when the source is at rest. vs

and vo are the speeds of the source and the observer, respectively.
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As seen in Figure 10.15, a source at rest is emitting sound at frequency fs and
an observer approaching the source is traveling at speed vo .

Let us remember the relation between the frequency fs and wavelength λs

emitted by a source at rest:
Figure 10.15: Sound source at
rest and observer moving to-
wards the source at speed vo .

fs =
v

λs

In other words, the distance between two consecutive wavefronts is λs . The
speed of this wave with respect to the ground is v , whereas the observer running
at speed vo observes the wave to be approaching at speed v + vo . In this case, the
frequency heard by the observer is

fo =
v + vo

λs

If we eliminate the wavelength λs between these two equations and rearrange
the terms, we get

fo =
v + vo

v
fs (10.20)

The observer will hear the sound at a higher frequency.
If the observer is moving away from the source, we take the velocity of the

observer as negative. In this case, v + vo will be smaller and the sound heard by
the observer will have a lower frequency.
Moving source, stationary observer

As seen in Figure 10.16b, let the source travel with a speed vs and approach a
stationary observer. If the emitted sound has frequency fs and period Ts = 1/ fs

when the source is stationary, the wavelength of the sound emitted from the
stationary source will be Figure 10.16: (a) The source at

rest generates sound with wave-
length λs . (b) The distance be-
tween two fronts (wavelength
λ0 ) decreases when the source
is moving.

λs = vTs =
v

fs

Now, let us consider that the �rst of the two consecutive wavefronts is emitted.
The source will have traveled a distance of vsTs = vs/ fs during the time that
it takes for the second wavefront to be emitted. Therefore, the new distance
between two consecutive fronts, in other words, the wavelength λo measured by
the observer, will be,

λo = λs − vsTs = λs −
vs

fs

The stationary observer will perceive the frequency of the sound approaching
with wavelength λo , as follows:

fo =
v

λo

If we substitute the value of λo and rearrange, we �nd that:

fo =
v

v − vs
fs (10.21)

The observer will again observe the sound at a higher frequency. If the source
is moving away from the observer, we will take the value vs as negative in the
formula. In that case, the sound heard by the observer will have a lower frequency.

Let us note one point here: The respective speeds of the source and observer
do not appear as symmetrical in these formulas. In other words, the Doppler
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e�ect gives di�erent results depending on whether the object or the source is
approaching with the same speed. The reason for this is that the wavelength of
the sound propagating in the air is di�erent in both cases. Relative velocity does
not change this fact.
Both source and observer moving

We can easily calculate this case by using the two formulas found above for
only one of the observer or the source moving.

The frequency fo heard by a stationary observer from a moving source was
given by Eq. (10.21). This fo value replaces fs in Eq. (10.20), which we found for
a moving observer. Therefore, if we apply both formulas successively, we get

fo =
v + vo

v

v

v − vs
fs

fo =
v + vo

v − vs
fs (Doppler formula) (10.22)

Note the signs of the velocities vs and vo when using this formula: Velocities in
the approaching direction are taken as positive for both the source and the observer.
In the “away” direction, they are taken as negative.

The Doppler formula for electromagnetic waves is slightly di�erent from
this. This is because the relative velocity addition formula of the speed of light is
di�erent from that of classical physics.

The Doppler e�ect has a wide range of applications in science and technology.
The most important one is determining the velocities of celestial bodies. The
approaching or receding speed of a star moving relative to the Earth can be
calculated by measuring the change in the frequency of a known color in the
light emitted by that star. Measurements indeed show that stars mostly move
away from each other. This means that the universe is expanding.

Figure 10.17: The speed con-
trol device called radar, operates
with the Doppler e�ect in tra�c. Another application is the device known as “radar” which is used by highway

patrols to monitor the speed of vehicles. In this device, an electromagnetic
wave (microwave) sent forward is re�ected from a moving vehicle back into the
device. The speed of the vehicle can be calculated from the di�erence between
the frequencies of the outgoing and incoming waves.
Shock Wave

What happens if a wave source travels faster than the wave it generates?
We can again answer this question with wavefronts. Figure 10.18 shows the
wavefronts generated at various times by a source traveling at speed vs . These
are spherical surfaces in three-dimensional space. If vs<v , in other words, if the
source velocity is less than the wave velocity (Figure 10.18a), the distance between
consecutive fronts will decrease in the direction of motion and increase in the rear
direction, as seen in the �gure. In this case, the Doppler e�ect will be observed.

Figure 10.18: Wavefronts
formed when the source velocity
vs is (a) less than, (b) equal to
or (c) greater than the wave
velocity v .
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However, if vs>v , in other words, if the source velocity is greater than the
wave velocity (Figure 10.18c), the source moves by leaving behind the wavefronts
that it previously emitted. Let us examine the surface of the cone tangent to all
of these wavefronts. When this cone reaches a stationary observer, the observer
will hear the sum total of the magnitudes of each wavefronts at once. He/she will
hear a booming explosion (sonic boom). Thus, we have what is called a shock
wave.

When modern �ghter planes �y faster than the speed of sound, this conic
wavefront produces a sound that resembles an explosion everywhere it passes. It
is said that the “plane broke through the sound barrier.” This is actually incorrect,
because a shock wave is not an instantaneous phenomena. The plane is already

Figure 10.19: The shock wave
formed when a �ghter plane ex-
ceeds the sound barrier causes
the air to concentrate where it
passes, and a conic wavefront is
observed.

�ying faster than the speed of sound, but the conic wavefront passes through an
observer only once. As it applies the energy of all of the wavefronts at once, its
impact can be large enough to break window glasses.

Shock waves are used to break kidney stones in modern medicine. Sound
waves at frequencies called ultrasound, which are sent from outside of the body
transfer their energy into dense stones and break them into small parts.

Example 10.11

The siren of an ambulance can emit sound at the 440 Hz fre-
quency. The ambulance is approaching a junction at a speed of
144 km/hour .

(a) What frequency is heard by an observer standing at the
junction?

(b) What frequency is heard by the observer when the am-
bulance is moving away? (The speed of sound in air is
v = 340 m/s .)

Answer

(a) We calculate fo , the frequency heard by the observer, by
using Eq. (10.22), which we found for the Doppler e�ect:

fo =
v + vo

v − vs
fs

The velocity of the stationary observer will be vo=0 . We
convert the velocity vs of the ambulance into m/s units:

vs =
144 × 1000

3600
= 40 m/s

The velocity vs of the ambulance (source) is taken as posi-
tive when it is approaching. Accordingly, we calculate the
frequency heard by the observer:

fo =
340 + 0
340 − 40

× 440 = 499 Hz

(b) We take the velocity vs as negative as the ambulance
moves away:

f =
340 + 0
340 + 40

× 440 = 394 Hz .

Example 10.12

An orchestra in an open-top train car is playing the note A (La)
(frequency 440 Hz ) as it travels.
(a) An observer sitting in a stationary car beside the railroad

tracks hears this sound as the note B-�at (Si-bemol) (fre-
quency 466 Hz ). Calculate the speed of the train.

(b) In what direction and at what speed should the observer
drive his/her car to hear this sound as the note B (Si) (fre-
quency 494 Hz )?

Answer
(a) We set vo=0 in The Doppler formula (Eq. 10.22) as the
observer is stationary:

fo =
v

v − vs
fs

We �nd the source velocity by substituting the frequencies

and the speed of sound:

466 =
340

340 − vs
× 440 → vs = 19 m/s .

(b) We use the Doppler formula in which both the source and
the observer are moving:

fo =
v + vo

v − vs
fs

The source velocity was found in item (a). We �nd the ob-
server velocity by also substituting the frequencies:

494 =
340 + vo

340 − 19
440 → vo = +20 m/s

The observer should drive the car towards the train, because
the velocity is positive.
(Note: The experimental proof of the Doppler e�ect was pro-
vided by a similar orchestra playing on a train in 1845.)
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Multiple-choice Questions

1. The speed of a wave on a string is not dependent on
which of the following?

(a) The force stretching the string.
(b) The density of the string.
(c) The length of the string.
(d) None of the above.

2. A string is vibrated from one end. Which of the follow-
ing is incorrect if the vibration frequency is doubled?

(a) The wave speed will double.
(b) The angular frequency will double.
(c) The period will halve.
(d) The wavelength will halve.

3. Two strings of equal lengths are stretched with equal
forces. Which of the following is correct?

(a) The one with higher density will have a higher wave
speed.
(b) The one with the lower density will have a lower
wave speed.
(c) The one with the higher density will have a lower
wave speed.
(d) Their wave speeds will be equal.

4. How would you hear the frequency of a sound source
approaching you?

(a) At a higher frequency.
(b) At a lower frequency.
(c) At the same frequency.
(d) At double the frequency.

5. Which is correct if the frequency of a wave is doubled
on a string with constant tension?

(a) The velocity will double.
(b) The wavelength will double.
(c) The wavelength will halve.
(d) The period will double.

6. Which is correct when two waves reach the same point
at the same time?

(a) Destructive interference will occur if they arrive
with same phase.
(b) Constructive interference will occur if they arrive
with opposite phases.
(c) Destructive interference will occur if they arrive
with opposite phases.
(d) There will be no interference.

7. Which of the following is correct?
(a) Sound waves are transverse waves.
(b) Water waves are longitudinal waves.
(c) Sound waves are longitudinal waves.
(d) The wave on a string is a longitudinal wave.

8. When will a shock wave occur?
(a) If the source velocity is less than the speed of sound.
(b) If the source velocity is equal to the speed of sound.
(c) If the source velocity is greater than the speed of
sound.
(d) If the amplitude of the sound is high.

9. Which is incorrect for two waves propagating on the
same string?

(a) Their frequencies may be di�erent.
(b) Their velocities may be di�erent.
(c) Their wavelengths may be di�erent.
(d) Their amplitudes may be di�erent.

10. The tension in a string is increased by a factor of 4. What
will happen to the wave speed?

(a) It will decrease by a factor of 4.
(b) It will be halved.
(c) It will be doubled.
(d) It will increase by a factor of 4.

11. The density of a string is increased by a factor of 4. What
will happen to the wave speed?

(a) It will decrease by a factor of 4.
(b) It will be halved.
(c) It will be doubled.
(d) It will increase by a factor of 4.

12. Two strings with di�erent densities are attached end to
end. Which will remain constant when a periodic wave
is transmitted from one string to the other?

(a) Speed
(b) Wavelength
(c) Frequency
(d) Amplitude

13. Which is incorrect when a wave propagating on a light
string reaches a dense string?

(a) It will be re�ected with the same phase.
(b) It will be re�ected with the opposite phase.
(c) It will be transmitted with the same phase.
(d) It is impossible to tell.

14. Which is correct for two waves propagating towards
each other on the same string?

(a) They will collide like billiard balls.
(b) They will pass through each other.
(c) They will merge and become a single wave.
(d) It is impossible to tell.
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15. Which of the following is a wave propagating in the
−x -direction?

(a) sin 3x cos 5t
(b) sin(3x − 5t)
(c) sin(3x + 5t)
(d) cos(3t − 5x)

16. Which is a standing wave?
(a) sin 3x cos 5t
(b) sin(3x − 5t)
(c) sin(3x + 5t)
(d) cos(3t − 5x)

17. A wave propagating on a string does not transmit which
of the following?

(a) Material (b) Energy (c) Momentum (d) Work

18. Which of the following is correct when there is interfer-
ence between two waves?

(a) They exchange energy.
(b) They will a�ect each other’s propagation.
(c) They lose energy during the interference.
(d) They are added algebraically.

19. Which wave property distinguishes the sound of a violin
from that of a guitar?

(a) Amplitude
(b) Frequency
(c) Wavelength
(d) Harmonics

20. Which of the following situations will decrease the fre-
quency heard by the observer due to the Doppler e�ect?

(a) When the observer approaches the source.
(b) When the source approaches the observer.
(c) When the source and observer approach each other
simultaneously.
(d) When the source moves away from the observer.

Problems

(The speed of sound in air is to be used as 340 m/s wherever
necessary.)

10.1 General Properties of Waves

10.1 The note C (Do) coming out of a musical instrument
has a frequency of 262 Hz . Calculate its wavelength.

[A: 1.3 m .]

10.2 The range of visible light, which is a type of electromag-
netic wave, is between red light at the frequency 4.3×1014 Hz
and violet light at frequency 7.5× 1014 Hz . Taking the speed
of light as c = 3 × 108 m/s , calculate the wavelength range
of visible light in units of nanometers (nm).

[A: 400 − 700 nm .]

10.3 Sound waves above 20 kHz , which is the highest fre-
quency audible by the human ear, are called ultrasound. They
are used to obtain images by passing them through human
skin, after which they are re�ected by the internal organs. The
speed of ultrasound in the body is 1540 m/s . The wavelength
should be around 1 mm for high-quality imaging. What
should the frequency of the ultrasound be that gives 1 mm
wavelength inside of the body? [A: 1.54 MHz .]

10.4 Wave speed is 30 m/s when a tension of 9 N is applied
between two ends of a string. How much tension should be
exerted to obtain a wave speed of 40 m/s? [A: 16 N .]

10.5 Two strings with linear densities µ1=0.05 kg/m and
µ2=0.2 kg/m and with equal length L=1.20 m are attached

end to end. If a tension of F=50 N is applied from the two
outer ends, how much time will it take for a wave to travel
from one end to the other? [A: 0.11 s .]

10.6 Tsunami waves in oceans have very long wavelengths.
The wavelength of a tsunami wave that occurred after an
earthquake in Japan was observed to be 200 km . This wave
was observed to reach the coasts of Australia, which are 7000
km away, in 9 hours. (a) What is the wave speed? (b) As
the wavelength is very large with respect to the depth of the
ocean, what is the average ocean depth between Japan and
Australia? [A: (a) 216 m/s , (b) 4.7 km .]

10.7 The sinusoidal wave on a string with linear density
µ=0.2 kg/m is given as

y(x, t) = 0.7 sin(0.4πx − 12t) (meters)

(a) What are the wave amplitude, wavelength, period and
wave speed? (b) What is the tension on the string?

[A: (a) A = 0.7 m , λ = 5 m , T = π/6 s , v = 9.5 m/s ,
(b) T = 18 N .]

10.8 Determine the direction of propagation and speed of
the wave for the following wave functions:

(a) y = 2 sin(2x − 7t)
(b) y = 3 cos(3t − 8x)
(c) y = 4 cos(7x + 21t)

[A: (a) 3.5 m/s in the +x -direction, (b) 0.38 m/s in the +x -
direction, (c) 3 m/s in the −x -direction.)
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10.9 Two ends of a string with linear density µ=0.5 kg are
stretched with a force F=8 N . When the string is transversely
pulled from one end by 5 cm and released, it oscillates with
a frequency of 20 Hz . (a) Find the wave speed, period and
wavelength. (b) Write the equation of the sinusoidal wave
that is produced.
[A:(a) 4 m/s , 0.05 s , 0.2 m , (b) y = 0.05 sin(10πx − 40πt) .]

Problem 10.10
10.10 The �gure shows the shape of a sinusoidal wave on a
string at times t = 0 and t = 2 s . Write the expression of the
wave function. [A: y = 0.05 sin(5πx − 6πt) .]

10.11 The distance between two successive maximum points
of water waves in a pool is measured as 1.5 m . 10 maximum
points pass by an observer in 5 s . (a) What is the wave speed?
(b) Considering that the pool is shallow, what is the average
depth of the pool? [A: (a) 3 m/s , (b) 0.9 m .]

10.2 Interference, Reflection and Transmission
of Waves
10.12 Two waves propagating on a string are given as

y1 = 2 sin
(2π

3
x − 7t

)
y2 = 2 sin

(2π
3

x + 7t
)

(a) Determine the nodes and antinodes of the standing wave
produced. (b) Calculate the vibration amplitude of the point
x=0.25 m . [A: (a) Nodes: x = 0, 0.75, 1.5, 2.25 . . .m ,
Antinodes: x = 0.38, 1.13, 1.88 . . .m . (b) A′ = 3.5 m .]

10.13 A tension F=90 N is applied to both ends of a string
with length 1.20 m and linear density 0.1 kg/m . What are
the fundamental frequency (1st harmonic) and 3rd harmonic
frequency generated on this string?

[A: 12.5 Hz, 37.5 Hz .]

10.14 The wave speed on a string with length 40 cm is
360 m/s . (a) What is the fundamental frequency? (b) Consid-
ering that the human ear can hear sounds with a maximum

frequency of 20 000 Hz , what is the highest harmonic that
can be heard on this string?

[A: (a) 450 Hz , (b) n = 44 .]

10.15 On a string with length 40 cm , the frequencies of two
successive harmonics are 440 Hz and 500 Hz . (a) What is
the fundamental frequency? (b) What is the wave speed on
the string? [A: (a) 60 Hz , (b) 48 m/s .]

10.16 A guitar string with linear density µ=0.001 kg/m and
length 30 cm is tuned such that its fundamental frequency
is the note E (Mi, frequency 330 Hz ). (a) How much is the
string stretched? (b) Where should the string be pressed so
that it can produce the note F (Fa, frequency349 Hz )?

[A: (a) 39 N , (b) 2 cm .]

10.17 A sound wave sent from a speaker at one end of a
conference hall hits the opposite wall and is re�ected back.
An observer walking between these two walls notices that
no sound is heard at 2 m intervals. Calculate the frequency
of the sound. [A: 85 Hz .]

10.3 The Doppler effect and Shock Waves

10.18 The whistle of a train traveling at a speed of 50 m/s is
able to emit sound at a frequency of 330 Hz . What frequency
will a stationary observer beside the railroad tracks hear, (a)
when the train is approaching, (b) when the train is moving
away? [A: (a) 387 Hz , (b) 288 Hz .]

10.19 A train is approaching as its whistle blows the note C
(Do, frequency 262 Hz ). (a) An observer sitting in a station-
ary car beside the tracks hears this sound as the note D-�at
(Re bemol, frequency 277 Hz ). Calculate the speed of the
train. (b) In what direction and at what velocity should the
observer drive his/her car to hear this sound as the note D
(Re, frequency 294 Hz )?

[A: (a) 18 m/s , (b) 21 m/s towards the train.]

10.20 A stationary observer beside a railroad track mea-
sures the frequency of the train’s whistle. He/she �nds the
frequency to be 400 Hz while the train is approaching and
240 Hz while it is moving away. Calculate the velocity of the
train and the actual frequency of the whistle.

[A: 85 m/s and 300 Hz .]
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FLUIDS

The Niagara Falls is located on
the border between Canada and
USA and, with its three water-
falls, has the highest �ow rate in
the world.
The properties of liquids are
much richer and more complex
than those of solids. What
are the macroscopic quantities
that de�ne a liquid without
looking into the movement of
each molecule? Which laws of
physics specify the relations be-
tween them?

We can distinguish the three states of matter known as solid, liquid and gas
by looking at their physical properties. Solids are hard, liquids �ow and gases are
volatile. The reason for such behavior can only be understood by looking into their
microscopic structures and by examining the forces between atoms and molecules.
Solid atoms are regularly positioned and tightly bonded with atomic bonds; they
may only vibrate around their equilibrium positions. Liquid molecules, on the
other hand, do not have a very regular structure and the intermolecular force is
very weak. Their bonds are repeatedly broken and renewed. And, in gases, the
molecules are located too far apart to interact with each other and, they move
freely. The only force keeping gases together is the walls of the container. Liquids
and gases are jointly known as �uids.

Can we apply the dynamic and static methods that we have learned thus
far to �uids? The motion of �uids is much more complex, and it is practically
impossible to work with Newton’s law for so many molecules. Instead, we can
reach many conclusions using energy concepts.
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11.1 GENERAL PROPERTIES OF FLUIDS

Density
It is not practical to work with total mass in liquids and gases, the results

obtained could be mistaken to be valid only for that speci�c amount of liquid.
Instead, it is more useful to work with the mass of �uid per unit volume, in other
words, with density.

If the mass inside of a small volume ∆V around a certain point of the �uid is
∆m , then the density of the �uid at that point is

ρ =
∆m
∆V

(11.1)

but the density may be di�erent at another place in the �uid. The unit of density
is kg/m3 , but it is more common to use g/cm3 in daily life. The table below lists
the densities of some �uids.

Densities of some liquids and gases
(The values are for 0◦C and 1 atm pressure, unless speci�ed otherwise.)

material density (kg/m3) material density (kg/m3)

Water 1 000 Air 1.20
Sea water 1 030 Carbon dioxide 1.98
Olive oil 920 Hydrogen 0.09
Ethyl alcohol 790 Oxygen 1.33
Mercury (Hg) 13 595 Water vapor (100◦C) 0.80

You may �nd the densities of of the other elements in the periodic table
provided in Appendix D.
Pressure

A bicycle or automobile tire can carry very heavy loads, despite containing
air. Likewise, we feel a discomforting pain in our ears when we dive deep into
the sea. All �uids exert a force on the walls of their containers and on the objects
contained inside of them. This force is perpendicular to the surface; �uids cannot
exert a force parallel to the surface.

Figure 11.1: Pressure in daily
life: Automobile tire, pressure
cooker, blood pressure gauge.

If a �uid applies a force F on a surface area A , the pressure it exerts on that
surface is,

p =
F
A

(11.2)

The unit of pressure is N/m2 and is called the Pascal (Pa):

1 pascal = 1 Pa = 1 N/m2
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Other units, such as atmosphere, the bar, the millibar, and the height of a
column of mercury are used in technology and meteorology:

1 atm = 76 cm Hg = 1.013 bar = 1.013 × 105 Pa

1 bar = 1000 millibar = 105 Pa

Hydrostatic Pressure
Pressure increases as you go deeper into a liquid. To calculate this, let us

consider a thin layer of liquid with surface area A and a small thickness dy at a
depth y , inside a liquid with density ρ (Figure 11.2). The mass of the liquid in
this layer is the product of volume and density:

m = ρV = ρ A dy

If the pressure at the top surface of this mass of liquid is P , the pressure at its
bottom surface will be higher by dP . We may consider only the forces in the
vertical direction, as the forces on the lateral surfaces will balance each other:

Figure 11.2: Forces acting on
the top and bottom surfaces of
a layer with thickness dy inside
a liquid.

Ftop + mg = Fbottom

P A + ρA dy g = (P + dP) A

By simplifying we get
dP = ρg dy

Let us take the level y = 0 at the surface of the liquid. If there is an external
pressure P0 as well, acting on the surface from the outside, we take the integral
from that point down to depth y :∫ P

P0
dP = ρg

∫ y

0
dy

P − P0 = ρg y

Therefore, the hydrostatic pressure inside of a liquid varies with depth as
follows:

P = P0 + ρg y (Hydrostatic pressure) (11.3)

y should be replaced with −y for upward cases, like calculating the air pressure
in the atmosphere. In obtaining this formula, we considered density and gravity
to be constants and took them outside of the integral. However, the change in
density and the gravitational acceleration must also be taken into consideration
if the change in height is very high.

Very high pressures are exerted on submarines and divers when they dive
very deep below the sea level. The surfaces of submarines are reinforced with
special steel cages. Likewise, special suits prevent a diver’s thorax from collapsing
in.
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Pascal’s Principle
In the expression (11.3), which we found for the variation of pressure with

depth, notice that the surface pressure P0 is e�ective at every depth. When the
surface pressure changes, its impact will be felt at every depth. This is called the
Pascal’s principle:

The external pressure applied to a liquid is equally transmitted to
each point of the liquid.

Hydraulic cranes used in lifting jobs in industry operate on Pascal’s principle
(Figure 11.3). As the force exerted on a small surface of the liquid is transmitted
as pressure to another large surface, we can write Pascal’s principle for both
surfaces:

P1 = P2 =⇒
F1

A1
=

F2

A2
(11.4)

Thus, the force on the large surface will also be larger. The hydraulic brake system
of automobiles also uses this principle. With the small force we exert on the brake

Figure 11.3: Hydraulic crane. pedal, the brake pads compress a disk on the wheel with a much greater force.
Measuring Pressure

The general name for an apparatus that measures pressure is pressure gauge,
also called a manometer; however, gauges used to measure atmospheric pressure
are called barometers. There are two main types of pressure gauge: closed-tube
and open-tube.

A closed-tube gauge is shown in Figure 11.4a. A glass tube with one closed-
end is fully �lled with mercury and its open end is dipped inside of a tank of
mercury. The external atmospheric pressure forces some mercury to remain
inside of the column. The height of the mercury column is equal to the external
atmospheric pressure P0 :

P0 = ρHggh

Figure 11.4: (a) Closed-tube
manometer, (b) Open-tube
manometer.

An open-tube manometer compares the pressures in two columns of a U-tube.
As seen in Figure 11.4b, one end of a U-tube containing liquid is connected to
the container whose pressure is to be measured. The other end is open. Let us
examine the di�erence in height between the two columns. For example, let
the height of the liquid on the open column be higher by h . As the hydrostatic
pressure will be equal at equal heights, the pressures of points A and B should
be equal:

PA = PB

The end A has the pressure P , which is to be measured. On the other hand, the
end B is higher by h , and above it, there is atmospheric pressure P0 . Therefore,
writing this equality as

P = P0 + ρg h (11.5)
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we get the pressure P in terms of the liquid height in the column and density.
Gauge pressure

Let us return to the pressure formula in the U-tube:

P = P0 + ρg h

The air pressure P0 of 1 atmosphere is present in all measurements on the surface
of the Earth. We �nd the absolute pressure by adding the pressure that results
from the level di�erence in the U-tube to this value.

However, in industry, the di�erence with respect to the atmospheric pressure
is more useful than the absolute pressure. This is called the gauge pressure.
Accordingly, the gauge pressure is found by only calculating the ρgh pressure
value of the mercury column in the U-tube above:

Pg = ρgh (11.6)

Recommended pressure values for automobiles, blood pressure values, city water
and gas pressure values, etc. should all be considered to be gauge pressure.
The Force and Torque on a Dam Wall

As a good application of hydrostatic pressure, let us calculate the total force
acting on a dam wall and the torque that is trying to topple it.

Let us consider a dam with width L and a height of water H enclosed by it
(Figure 11.5). As the pressure exerted by the water on the wall is di�erent at each
height, we can calculate the total force only by integration. For this purpose, let
us consider the small force dF exerted by a strip of water of length L and height
dy located between y and y + dy as measured from a point O at the bottom.
As the origin is selected at the bottom of the water, the depth of this strip from
the surface is (H − y) . Accordingly, the force acting on the strip with surface
dA = L dy due to hydrostatic pressure is

Figure 11.5: Force exerted on a
strip with thickness dy on the
dam’s surface.

dF = P dA = [ρg(H − y)] (L dy) = ρgL (H − y) dy

We can �nd the total force by summing, in other words, integrating the contribu-
tions of these small strips from the value y = 0 to the value y = H :

F = ρgL
∫ H

0
(H − y) dy = ρgL

∣∣∣∣Hy − y2

2

∣∣∣∣∣H
0

We �nd the total force by substituting the integral limits:

F = 1
2 ρgLH2 (11.7)

Note that the force is proportional to the square of the water height.
The torque of the force trying to topple the dam around the point O is likewise

calculated by integration. We again write the small torque dτ of the force dF in
the �gure about the point O:

dτ = dF y = ρgL (H − y) dy y

The total torque will be the integral of these small dτ contributions:

τ =

∫
dF y = ρgL

∫ H

0
(Hy − y2) dy = ρgL

∣∣∣∣H y2

2
−
y3

3

∣∣∣∣∣H
0
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Substituting the integral limits, we �nd the total torque to be:

τ = 1
6 ρgLH3 (11.8)

Note that the total torque is proportional to the cube of the height of water. In
dam constructions, the toppling torque of water is more dangerous that the force
exerted by the water.

Example 11.1

(a) What is the total mass of air in a classroom with dimen-
sions 10 × 20 × ×4 m3 ?

(b) A gold crown weighing 1.5 kg is submerged in water and
it displaces an 80 cm3 volume of water. Is the crown made
of pure gold?

Answer
(a) We �rst take the density of air from the table on page 180
as 1.2 kg/m3 . We then calculate the mass of air using the

volume of the classroom:
m = ρV = 1.2 × (10 × 20 × 4) = 960 kg

It is surprising to see that the air in a typical room is so heavy.
(b) We take the density of gold from Appendix D as
19.3 g/cm3 . We then calculate what the volume of 1.5 kg
pure gold would be:

V = m/ρ = 1500/19.3 = 77.7 cm3

The volume to be displaced is lower, therefore the crown is
not pure gold.

Example 11.2

The density of water is 1.0 g/cm3 and the density of ethyl alco-
hol is 0.8 g/cm3 . A water-ethyl alcohol mixture with volume
150 cm3 has a mass of 132 g . Calculate the amount of water
and ethyl alcohol in this mixture.

Answer
Total volume will be the sum of the volume of water V1 and
the volume of alcohol V2 . If we indicate the mass of water

with m1 , the mass of ethyl alcohol will be (132 − m1) . We
write the volumes as V = m/ρ and add:

V = V1 + V2 =
m1

ρ1
+

132 − m1

ρ2

150 =
m1

1.0
+

132 − m1

0.8
From this equation, we �rst �nd the mass of water and then
the mass of alcohol:

m1 = 60 g and m2 = 132 − 60 = 72 g .

Example 11.3

The pressure of the gas inside of a balloon is to be measured us-
ing an open-ended manometer in a place where the atmospheric
pressure is 72 cm Hg . If the open-ended mercury column is
38 cm higher, what is the absolute pressure and gauge pressure
of the gas?

Answer
The gauge pressure is only the pressure of the mercury col-

umn, in other words, 38 cm Hg .
The absolute pressure is the mercury column plus the at-
mospheric pressure acting on it, in other words, 38 + 72 =

110 cm Hg .
We use the de�nition 1 atm = 76 cm Hg if we wish to �nd
these pressures in terms of atmospheres:

Gauge pressure: P = 38/76 = 0.5 atm
Absolute pressure: P = 110/76 = 1.4 atm

Example 11.4

An unknown type of oil is added to the water column in a U-tube
with two open ends. Since the height of the water is h1 = 36 cm
and the height of the oil is h2 = 50 cm as seen in the �gure,

calculate the density of the oil.

Answer
The hydrostatic pressure of the water in two columns is equal
at points 1 and 2, which have the same height:

P0 + ρ1gh1 = P0 + ρ2gh2

Using this, we �nd the relation between the densities:

ρ2 = ρ1
h1

h2
We take the density of water as 1 g/cm3 and calculate:

ρ2 = 1 ×
36
50

= 0.72 g/cm3
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Example 11.5

In a hydraulic crane used to lift cars, the circular piston pushing
the large platform has a radius of 20 cm . The other piston
pushing the liquid has a radius of 4 cm . How much force is
required to lift a car with a mass of 1500 kg?

Answer
The pressures on the piston and platform are equal according

to Pascal’s principle. Accordingly, the relation between the
forces is

F1

A1
=

F2

A2
We calculate the force by taking the area of the circles πr2

1
and the weight of the car W = mg :

F1 =
πr2

1

πr2
2

mg =
42

202 × 15000 = 600 N

Example 11.6

The wall of a dam has a height of 170 m and length of 1800 m .
Find the total force acting on the dam wall and the torque trying
to topple it over.

Answer

As the pressure varies with the height, we had calculated

the force by integration and found Eq. 11.7. We calculate by
substituting the numerical values:

F = 1
2ρgLH2 = 1

2×1000×10×1800×1702 = 2.6×1011 N

Likewise, we had found the torque with respect to a point at
the bottom of the wall (Eq. 11.8):

τ = 1
6ρgLH3 = 1

6 × 1000 × 10 × 1800 × 1703

τ = 1.5 × 1013 N·m

11.2 BUOYANCY AND ARCHIMEDES’ PRINCIPLE

Objects immersed in a �uid feel lighter. A balloon �lled with helium gas �oats.
Fish go up or down in water by compressing their swim bladders. Submarines
surface or dive by pumping air or water into their diving tanks. Likewise, when
whales wash up on a shore, their lungs get crushed under their own weight and
they die. This property is called buoyancy.

Fluids always exert an upward force on the submerged objects, called the
buoyant force. Discovered by Archimedes, its value can be expressed as follows:

Archimedes’ Principle
Every object immersed in a liquid will be pushed upwards by
a force equivalent to theweight of the liquid displaced by that
object.

Attention should be paid to the expression “liquid displaced” in this principle.
The whole volume of the object will be taken into consideration if it is fully
immersed in the liquid. However, as in the case of a piece of wood, if it �oats
while partially submerged, then only the volume inside of the liquid will be taken
into consideration.

The source of buoyant force is the variation of hydrostatic pressure with
depth. We can easily see this by calculating the forces exerted on the surfaces of
an object shaped like a cylinder (Figure 11.6).

Let us consider a cylinder with base area A and height h , immersed inside
a liquid with density ρ0 . There is no need to consider the forces on the lateral
surfaces of the cylinder, because they mutually balance each other. Let the top Figure 11.6: Forces acting on

the top and bottom surface in-
side of a liquid.

base of the cylinder be at depth y and the bottom base at depth y+h . Accordingly,
the buoyant force FB will be the di�erence of the forces at the bottom and top
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surfaces. If we write the force on each surface as the product of the pressure at
that depth and the surface area, we get

FB = Fbottom − Ftop = Pbottom A − Ptop A

= ρ0g(y + h) A − ρ0gy A

= ρ0g hA = ρ0gV

The value Ah here is the volume V of the object. Therefore, the expression is
found for Archimedes’ buoyant force FB :

FB = ρ0gV (Archimedes’ buoyant force) (11.9)

Archimedes’ principle also applies for partially immersed bodies, but in this
case, only the immersed volume is taken into consideration. Likewise, if we write
the hydrostatic pressure di�erence between the top and bottom surfaces of the
object and repeat the calculations, the volume V of the object is replaced with
the volume V ′ of the immersed part:

FB = ρ0gV ′ (for partially immersed bodies) (11.10)

The expression for the apparent weight of an object inside of a liquid can also be
found from this formula. If the object is made of a material with density ρ , its
real weight will be mg = ρVg . If we subtract the lightening e�ect of the buoyant
force, we get

W′ = W − FB = mg − FB = ρVg − ρ0Vg

W′ = (ρ − ρ0)Vg (apparent weight) (11.11)

Example 11.7

What percent of the volume of an iceberg �oating on water is
underwater? The density of sea water is ρ0 = 1.03 and the
density of ice is ρ = 0.92 g/cm3 .

Answer
The buoyancy of the water balances the weight of the ice-
berg. If the submerged part of an iceberg with volume V has

volume V ′ , the buoyant force FB will be equal to the weight
of the displaced water:

mg = FB

ρVg = ρ0V ′g
From here, we �nd the volume:

V ′

V
=
ρ

ρ0
=

0.92
1.03

= 0.89

Example 11.8

A wooden block is observed to �oat half-immersed when placed
in water. 60% of its volume is immersed when it is placed in
oil. Find the densities of the wood and the oil.

Answer
Let us denote the densities of the wood, water and oil with
ρ1, ρ2 and ρ3 , respectively. If the submerged part of the wood
with volume V has volume V ′ , this means that a buoyant
force FB equal to the weight of water with volume V ′ can
balance the weight mg of the wood:

mg = FB → ρ1gV = ρ2gV ′

We �nd the density of the wood by taking the density of the
water as ρ2 = 1 g/cm3 :

ρ1 =
V ′

V
ρ2 =

1
2
× 1 = 0.5 g/cm3

Likewise, if the part submerged in oil has volume V ′′ ,
the weight of the displaced oil will be equal to the weight of
the wood:

ρ1gV = ρ3gV ′′

ρ3 =
V

V ′′
ρ1 =

1
0.6
× 0.5 = 0.83 g/cm3
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Example 11.9

A stone block with volume 0.01 m3 and density ρ=2.7 g/cm3

is hanging in water as attached to a rope, as seen in the �gure.
Calculate the tension in the rope.

Answer
The downward weight of the stone is jointly balanced by the
upwards buoyant force and the tension in the rope. We write
the balance of the forces:

FB + T = mg
The buoyant force is equal to the weight ρ0Vg of the mass
of water displaced by the volume V . From here, we calculate
the tension T :

T = mg − FB = ρVg − ρ0Vg = (ρ − ρ0) Vg
T = (2.7 − 1) × 103 kg/m3 × 0.01 × 10 = 170 N .

11.3 SURFACE TENSION AND CAPILLARITY

Liquid surfaces that we encounter in daily life can exhibit very interesting
behavior. Raindrops that fall on leaves or car windows do not spread, but rather
form spherical bubbles. Likewise, liquid mercury does not stick to a surface, but
collects in spherical drops (Figure 11.7).

Figure 11.7: Examples of sur-
face tension: Raindrops, mercury
bubbles and an insect walking on
water without sinking.

In all of these examples, the liquid surface acts like an elastic membrane.
Liquid molecules bond together and try to form a stretched surface. For example,
a sewing needle carefully dropped on water may �oat. Mosquitoes and certain
insects can walk on the surface of water without sinking.

The property of liquid surfaces to resist external forces is called surface
tension. Water molecules, although they are neutral, can still attract each other
(we shall examine this in Chapter 14 as dipol interaction.) Brie�y, if a water
molecule is considered as a rod with one positive end and one negative end, a
weak but attractive force called the van der Waals force occurs between the
two molecules. This force generates surface tension.

Let us consider a molecule inside of a liquid and another molecule on the
surface (Figure 11.8). As the forces inside of the liquid balance each other, this

Figure 11.8: Forces acting on
water molecules inside and on
the surface of a liquid.

molecule can circulate freely throughout the liquid. However, the forces are not
in equilibrium for a molecule on the surface; a net force is exerted that pulls this
molecule towards the liquid and prevents it from leaving the surface.

Consider an imaginary line with length L drawn on the surface of the liquid
(Figure 11.9). If the force required to separate the molecules on both sides of this
line is F , then the coe�cient

Figure 11.9: Surface tension co-
e�cient.γ =

F
L

(surface tension coe�cient) (11.12)

is called the surface tension coe�cient. The surface tension coe�cients of
some liquids are as follows:
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Surface tension coe�cients of some liquids

liquid γ (N/m) liquid γ (N/m)

Water (0◦) 0.076 Mercury 0.487
Water (20◦) 0.072 Ethyl alcohol 0.023
Water (100◦) 0.059 Acetone 0.024
Soapy water (20◦) 0.025 Glycerin 0.064

In laundry, water should be able to reach the stains between the �bers of the
clothing material. Pure water cannot seep into these small gaps, because the
surface tension of water is high. However, the surface tension of water greatly
decreases when it is heated and soap is added, and it thus becomes able to pass
through �ne gaps.

As the surface tension of soapy water is lower, it can spread over a larger
surface without breaking and larger foams can be formed. The surface of soapy
water can be stretched over a wire frame. The areas of these surfaces are minimum.
Various minimal surfaces can thus be formed (Figure 11.10).Figure 11.10: A minimal sur-

face formed by soapy water.
Capillarity

When a tube with two open ends is submerged in water, the water inside of
the tube is observed to rise. The smaller the diameter of the tube is, the higher
the liquid rises. Water can be observed to rise up to a meter high in tubes with
very small diameters. This e�ect is called the capillarity. However, certain other
liquids do not rise, but in contrast, sink in capillary tubes.

A liquid exhibits two di�erent behaviors when it comes into contact with a
solid surface, depending on the forces between the molecules. For example, some
liquid surfaces are observed to curve upwards where they touch a glass tube. On
the other hand, the surface of mercury curves downward (Figure 11.11).

This behavior can be explained with the forces between molecules. The
attractive force between two of the same type of molecule in a liquid is called the
cohesion force. On the other hand, the attractive force between molecules of

Figure 11.11: In a glass tube,
the surface curves upward for
water, and downward for mer-
cury..

di�erent types is an adhesion force.
In the case of a water-glass surface, the adhesion force is greater and the water

is attracted to the glass; the level of water rises and these molecules attracted
to the surface are replaced with other molecules from the inside. As the contact
angle changes during the rise, the adhesion force steps in again and attracts
new liquid molecules. This process in which the liquid rises along the glass tube
continues until it is balanced by gravitational force.

The angle θ that the liquid surface makes with the solid wall is called the
contact angle. Measured from solid surfaces, this angle is acute (less than 90◦ )
for liquids curved upward, such as water, and obtuse for liquids curved downward,
such as mercury (Figure 11.12).

In a capillary tube, the height h is expressed in terms of the contact angle θ ,
the surface tension coe�cient γ and the tube radius r as follows:

Figure 11.12: Contact angles of
mercury and water with a glass
tube.

h =
2γ cos θ
ρgr

(11.13)

Capillarity is perhaps the most vital application of surface tension. It plays a
very signi�cant role in the survival of living beings. The sap of a tree can reach
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very high branches above; the blood in humans and animals can reach the �nest
veins in the circulation system, due to capillarity. Capillarity is used in many
applications in medicine and technology. For example, a capillary glass tube is
used to draw blood sample; paper towels absorb water through capillary action.

11.4 VISCOSITY

Every liquid has a consistency. Liquids such as water and alcohol �ow easily,
while liquids such as glycerin, tar and honey are di�cult to stir. As the latter
shows, moving a solid object inside of a liquid is di�cult. It is relatively easy to
walk in water but becomes more di�cult when you try to move faster.

The internal friction e�ect of liquids, one that resists its own �uidity and
the motion of bodies inside of it, is called viscosity. Liquids with high consis-
tency have higher viscosity. Gases also have internal friction, but it is much less
compared to that of liquids.

Figure 11.13: The higher con-
sistency a liquid has, the higher
is its viscosity.

The sources of viscosity are di�erent in liquids and gases: Internal friction
is caused by attractive van der Waals forces in liquids and by the collision of
molecules in gases. Because of this di�erence, the viscosities of liquids decrease,
whereas those of gases increase with temperature.

A viscosity coe�cient is de�ned to specify the e�ect of internal friction: Let
us consider a layer of liquid of width L between two solid horizontal plates as
seen in Figure 11.14. Let the top plate be pulled with speed v as the bottom plate
is kept �xed. The speed of the liquid layer will vary from one plate to the other:
The liquid surface in contact with the bottom plate will remain motionless, while
the surface in contact with the top plate will have speed v due to adhesion forces.
If the speed v is not too high, the speed of the liquid will increase linearly from
one layer to the other. This layered structure is called laminar �ow. If the surface
area of each plate is A , the exerted force is

Figure 11.14: Velocity pro�le
in laminar �ow.F = η A

v

L
(11.14)

and the proportionality constant is called the viscosity coe�cient, indicated
with the Greek letter η (eta). Its unit is (N/m2)·s = Pascal× s = (Pa · s). Another
unit used in industry is the poise, denoted with P, and its value is one tenth that
of the SI unit. One hundredth of a poise is called a centipoise and is indicated
with cP:

1 Pa · s = 10 poise = 1000 cP

The viscosity coe�cients of some liquids are as follows:

Viscosity coe�cients of some liquids

liquid η (cP) liquid η (cP)

Water (20◦) 1.00 Olive oil (20◦) 84
Water (40◦) 0.65 Motor oil (SAE20, 20◦) 125
Water (100◦) 0.28 Motor oil (SAE20, 150◦) 3
Honey (20◦) 10 Tar (20◦) 30 000

Viscosity varies rapidly with temperature. Motor oils that are viscous at room
temperature become as �uid as water when they reach the high temperature of a
running engine.
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Stokes’ Law
Solid bodies moving in �uids experience a resistant force caused by viscosity.

The magnitude of this drag force depends on the speed and geometric shape of
the object and the viscosity of the liquid. The result may be di�erent for each
geometrical shape. The formula found by the British scientist G.G. Stokes for the
drag force acting on a sphere with radius r is as follows:

F = 6π η r v (Stokes’ law for drag force) (11.15)

v is the speed of the �uid (or the speed of the object going in the opposite
Figure 11.15: A sphere inside
viscous liquid.

direction). The fact that drag force is proportional to velocity v was used in the
damped harmonic oscillator that we examined in Chapter 9.

In gases, the relation between drag force and velocity can be much di�erent.
Internal friction is proportional to v in low speeds, but in airplanes traveling
faster than the speed of sound (supersonic), it becomes proportional to v2 and
enormous power must be spent at such speeds.

11.5 BERNOULLI’S EQUATION

The motion of a �uid can take a wide range of appearances and is very di�cult
to describe. A laminar �ow in a calm river, the turbulent �ow of the exhaust gas
of an airplane, vortexes in seas, etc. All of these types of �ows are subject to
completely separate analyses. In this section, we shall consider an ideal �uid and
reach certain conclusions under general energy conservation laws.

First, let us give some de�nitions. An ideal �uid is a type of �uid that has
no viscosity and is incompressible. Of course, all �uids have internal friction and
may change volume under pressure. However, with a small margin of error, we
can take water and other liquids with low viscosity as ideal.

In a liquid medium, curves on which the velocity is considered as tangent at
every point are called streamlines. Streamlines can be made visible by adding
coloring at various points in the medium (Figure 11.16). There is a steady �ow
if the streamlines do not vary with time.

Figure 11.16: Streamlines
around an automobile.

The structure of streamlines provides information about the type of motion. If
streamlines form smooth and soft curves, it is called a laminar �ow. In contrast,
if the curves exhibit irregular behavior like whirlpools or turbulences, it is called
a turbulent �ow.

Laminar �ow can occur in low velocities. As velocity increases, turbulent
�ow starts after a certain value. We shall only consider laminar �ow here, as the
analysis of turbulent �ow is complicated.
Flow Rate and Equation of Continuity

The volume of a liquid that passes through a surface with cross-section A
per unit time is called the �ow rate and is indicated with Q . Its unit is m3/s . If
the �uid passes through a cross-section A with a constant velocity v , the volume
that passes through this cross-section in a time interval ∆t is the volume of a
cylinder with length v∆t and base area A . Accordingly, the �ow rate expression
will be as follows:

Q =
∆V
∆t

=
A v∆t

∆t

Q = A v (Flow rate) (11.16)
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In laminar �ow, streamlines do not intersect. Streamlines that surround any
cross-section A stretch out like a tube inside of the liquid. Let us consider two
di�erent cross-section of such a tube (Figure 11.17). Let the velocity through cross-
section A1 be v1 and that through A2 be v2 . As this �uid is ideal, in other words,
incompressible, an equal volume of liquid should pass through each cross-section
per unit time. Therefore, the �ow rates should be equal in both cross-sections.

Q1 = Q2

A1 v1 = A2 v2 (Equation of continuity) (11.17)

This equation is known as the equation of continuity. We can �ush water
Figure 11.17: Equal amount of
material passes through each
cross-section in unit time.

much faster through a garden hose by squeezing its end with our �ngers, because
the same amount of water is passing through a narrower cross-section. Therefore,
it should �ow faster to keep the �ow rate constant.

The equation of continuity states that volume is conserved, but since this is
an incompressible liquid, it actually states that mass is conserved. In other words,
the liquid undergoes no loss in mass along the streamline.
Conservation of energy

Let us consider the energy of a �uid mass in a �ow tube at two di�erent points.
The �uid mass passing through the cross-section A1 located at height y1 with
velocity v1 later passes through the cross-section A2 located at height y2 with
velocity v2 (Figure 11.18).

The work performed by the external forces acting on this tube will be equal
to the increase in total energy. Let us remember the expression (5.17) that we
found for the general conservation of energy when discussing the topic of energy
in Chapter 5:

(K1 + U1) + Wnc = K2 + U2

Here, K is the kinetic energy, U the gravitational potential energy and Wnc the
work performed by nonconservative forces. Let us write this law as follows for
convenience:

Figure 11.18: Two cross-
sections of a �ow tube.

Wnc = (K2 − K1) + (U2 − U1) (11.18)
The nonconservative external force acting on the �ow tube is caused by the
pressures on both ends. The lateral forces acting on the tube do not perform any
work, as they are perpendicular to the path. The force exerted by pressure P1 on
the �rst cross-section is equal to P1 A1 and the force exerted by pressure P2 on
the other end is P2 A2 . Let the �uid mass travel a distance of L1 under the e�ect
of force in the �rst cross-section and let the mass in the second cross-section
travel a distance of L2 . Accordingly, the net work performed is

Wnc = F1L1 − F2L2 = P1A1L1 − P2A2L2

The work performed by the second force is negative, because it is opposite the
displacement. Now, let us write the gravitational potential energy of the mass in
both cross-sections. As the displaced liquid mass has the same value m in both
places, we get

U2 − U1 = mgy2 − mgy1

The di�erence between the kinetic energies can likewise be written directly:

K2 − K1 = 1
2 mv2

2 −
1
2 mv2

1
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Adding these terms in the (11.18) equation, we get

P1A1L1 − P2A2L2 = 1
2 mv2

2 −
1
2 mv2

1 + mgy2 − mgy1

Let us write the mass m in terms of density and volume. The two cross-sections
of the tube and the distances traveled may be di�erent, but the volume will remain
the same:

V = A1L1 = A2L2

If we also express mass in terms of density, we get

m = ρV = ρ A1L1 = ρ A2L2

Therefore, if the products A1L1 and A2L2 are written as m/ρ , the expression
above simpli�es as follows:

P1 − P2 = 1
2ρv

2
2 −

1
2ρv

2
1 + ρgy2 − ρgy1

Rearranging the terms, we �nd the Bernoulli’s equation:

P1 + 1
2ρv

2
1 + ρgy1 = P2 + 1

2ρv
2
2 + ρgy2 (Bernoulli’s equation) (11.19)

The Bernoulli’s equation is the version of conservation of energy for liquids. This
equation is valid for ideal, in other words, non-viscous and incompressible �uids,
but it is also approximately correct for other �uids.

Figure 11.19: Applications of
the Bernoulli’s equation: Carbu-
retor in gasoline engines, per-
fume sprays, Pitot tubes in air-
planes.

Let us emphasize the conclusions that can be drawn from the Bernoulli’s
equation:
• Hydrostatic pressure. If we take v1 = v2 = 0 in the Bernoulli’s equation

for a mass of liquid at rest, we get

P1 + ρgy1 = P2 + ρgy2

If we take one end at y1 = 0 and the other at y2 = y , we get

P = P0 + ρgy

This is the hydrostatic pressure formula that we discussed earlier.
• Venturi tube. Let us consider two cross-sections at the same height in a

liquid tube (Figure 11.20). If we set y1 = y2 in Bernoulli’s equation,

P1 + 1
2ρv

2
1 = P2 + 1

2ρv
2
2

According to the equation of continuity, the pressure will be lower in the
Figure 11.20: Venturi tube. narrow cross-section of the tube because the velocity is higher there. This
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device, called the Venturi tube, is used in many technologies: in the carbure-
tors of gasoline engines for mixing gasoline and air, in pesticide sprayers, in
perfume sprays, etc. As seen in Figure 11.19, when air is blown from a tube
passing through the open end of the liquid, the pressure will decrease there,
and the liquid in the tank will rise and mix with the passing air.
The Pitot tube, which is a similar device, is used to measure the velocity
of airplanes with respect to air (Figure 11.21). Air passes with velocity v at
one end of a U-tube �lled with liquid and the velocity is ensured to be zero
at the other end. The velocity of the air can be calculated using Bernoulli’s

Figure 11.21: Pitot tube.equation by measuring the height h of the liquid rising due to the pressure
di�erence.

• Torricelli’s formula. Let us consider that a hole is opened at a distance h
below the surface on a closed tank containing liquid. Let us compare the
top liquid surface in the container and the point of the hole in Bernoulli’s
equation. The velocity of the liquid can be taken as zero at the top, because
the liquid surface is very large. Let the liquid surface inside of the container
be at pressure P and the pressure at the hole, which is just the atmospheric
pressure P0 , because it is open to the air. Accordingly,

P + 0 + ρgh = P0 + 1
2ρv

2

Figure 11.22: Velocities of wa-
ter at various depths according
to Torricelli’s formula.

v =

√
2gh +

2(P − P0)
ρ

(11.20)

We have P = P0 if the top of the container is also open to atmospheric
pressure, and we get

v =
√

2gh (11.21)

Called Torricelli’s formula, this relation shows that, just like a stone
dropped at a height of h in free fall, a liquid will also gain the velocity
v=

√
2gh . This is not surprising, because Bernoulli’s equation is an expres-

sion of conservation of energy. Figure 11.22 shows the velocities of water
coming out of holes opened at various depths.

• Aeronautics technology has the most striking application of Bernoulli’s
equation. This equation can be used to understand how a lifting force is
produced on the wings of a heavy steel bird. Examining the cross-section of
the wing of an aircraft in Figure 11.23, the lower part is more straight and
the top part is more curved. When an aircraft enters a beam of streamlines,

Figure 11.23: Speed and pres-
sure on an aircraft wing.

the air passing through the top will travel a longer distance and meet with
the others at the back. This means that the air at the top has a higher speed.
Therefore, according to Bernoulli’s equation, the pressure at the top of the
wing will be lower than that at the bottom. This pressure di�erence causes a
net upward lift force. This force should not be confused with Archimedes’
buoyancy.

Figure 11.24: Forces on a ball.

• The Bernoulli e�ect is likewise observed in curved balls in football and
baseball. When the ball spins as it is kicked forward, its e�ect on the air
speed is di�erent on sides A and B due to the rotation of the ball (Figure 11.24).
Consider an observer moving with the ball: On side A, the rotation against
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the air decreases the air speed locally, while the e�ect is opposite on side B.
Hence the air speed is greater at B than at A. This air speed di�erence causes
a pressure di�erence on both sides. As a result of the Bernoulli e�ect, a net
force arises that pushes the ball in the direction of lower pressure B shown
in the �gure.

Example 11.10

The main pipe of the city water network shown in the �gure
has cross-section area A1=4 m2 and another pipe connected to
it has a cross-section of A2=2 m2 . The water �owing through
cross-section A1 has a �ow rate of Q=24 m3/s .
(a) Calculate the speed of water in both cross-sections.
(b) If the pressure at the �rst cross-section is P1=2 atm , what

is the pressure at the second cross-section?

Answer
(a) The de�nition of �ow rate is given in Eq. (11.16):

Q = A1v1

From here, we �nd the speed v1 :

v1 =
Q
A1

=
24
4

= 6 m/s

We use the �ow rate or equation of continuity (11.17) to �nd
the speed at the other cross-section:

A1v1 = A2v2 → v2 =
A1

A2
v1 =

4
2
× 6 = 12 m/s

(b) We write Bernoulli’s equation (11.19):
P1 + 1

2ρv
2
1 + ρgy1 = P2 + 1

2ρv
2
2 + ρgy2

We take y1 = y2 , because the cross-sections are at the same
height and solve for P2 :

P2 = P1 −
1
2ρ

(
v2

2 − v
2
1

)
We calculate the pressure by �rst converting the atmosphere
unit into Pascal:

P2 = 2 × 1.013 × 105 − 1
2 × 1000 × (122 − 62)

P2 = 1.5 × 105 Pa = 1.5 atm

Example 11.11

Water is pumped with a pressure of P1=4 atm into the water
pipe at the entrance of a building. The water speed at the pipe
with cross-section 5 cm2 is 2 m/s at the entrance.
(a) What is the speed and pressure of the water �owing from

a tap with cross-section 1 cm2 at a height of 4 m on the
second �oor?

(b) What is the minimum pressure at the entrance such that
water can rise up to the 10th �oor at a height of 40 m?

Answer
(a) We �nd the water speed at the second �oor using the
equation of continuity:

A1v1 = A2v2 → v2 =
A1

A2
v1 =

5
1
× 2 = 10 m/s

We �nd the pressure using Bernoulli’s equation:
P1 + 1

2ρv
2
1 + ρgy1 = P2 + 1

2ρv
2
2 + ρgy2

We take y1 = 0 at the ground level and solve for P2 :
P2 = P1 −

1
2ρ(v2

2 − v
2
1) − ρgy2

We convert the pressure values into Pascal units, take the
density of water as ρ = 1000 kg/m3 and calculate:

P2 = 4×1.013×105− 1
2 ×1000×(102−22)−1000×10×4

P2 = 320 000 Pa = 3.1 atm .
(b) The water rising up to the 10th �oor means that it reaches
that �oor with at least zero speed. According to the equa-
tion of continuity, the velocity at the ground should also be
zero. Therefore, taking v1=v2=0 and P2=1 atm , Bernoulli’s
equation simpli�es as follows:

P1 + 0 + 0 = P2 + 0 + ρgy2

Since the tap is in open air, P2=1 atm . From here, we calcu-
late P1 :

P1 = 1×1.013×105+1000×10×40 = 501 000 Pa = 5 atm

Example 11.12

The mercury column of a Pitot tube on the wing of a �ying
aircraft has risen by 6 cm . What is the speed of the aircraft
with respect to the air?

Answer
Let us compare the end points of both columns. The speed of
air will be zero on one of end and v on the other. Since both
ends are at the same height y1=y2=y , Bernoulli’s equation is
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written as follows:
P1 + 1

2ρ × 02 + ρgy = P2 + 1
2ρv

2 + ρgy

P1 − P2 = 1
2ρv

2

Now, we look at the U-tube. The pressure di�erence will be
equal to the pressure of the mercury column:

ρHggh = 1
2ρv

2

v =

√
2gh

ρHg

ρ

We take the density of air as 1.2 and the density of mercury
as ρHg = 13600 kg/m3 and calculate the speed:

v =

√
20 × 0.06 ×

13600
1.2

= 117 m/s .

Multiple-choice Questions

1. In which of the containers in the �gure below is the
pressure at depth h lower?

(a) A (b) B (c) C (d) Equal

2. In which of the containers in the �gure above is the
pressure at the base lower?

(a) A (b) B (c) C (d) Equal

3. In which of the containers in the �gure above is the force
at the base greater?

(a) A (b) B (c) C (d) Equal

4. Which of the following are correct for hydrostatic pres-
sure?

I. It increases with depth.
II. It decreases with depth.
III. It increases with the density of the liquid.
IV. It decreases with the density of the liquid.

(a) I (b) I & II (c) I & III (d) I & IV

5. Which of the following is incorrect for the buoyant force
of liquids?

(a) It increases with depth.
(b) It increases with the density of the liquid.
(c) It increases with the volume of the object.
(d) It increases with the gravitational acceleration.

6. Will a boat sink more in lake water or salty sea water?
(a) Lake
(b) Sea
(c) Equal
(d) It is impossible to tell.

7. Lead is denser than copper. When two equal masses of
lead and copper are submerged in water, which one will
experience a larger buoyant force?

(a) Lead
(b) Copper
(c) Equal
(d) It is impossible to tell.

8. Lead is denser than copper. When two equal volumes of
lead and copper are submerged in water, which one will
experience a larger buoyant force?

(a) Lead
(b) Copper
(c) Equal
(d) It is impossible to tell.

9. Archimedes’ buoyancy force is equal to which of the
following?

(a) The weight of the submerged part of the object.
(b) The weight of the �oating part of the object.
(c) The weight of the water that it displaces.
(d) None of the above.

10. An iron sphere attached to a wooden block �oats when
placed on water. In which case will the buoyancy of the
water be greater?

(a) When the iron is on the top and out of the water.
(b) When the iron is at the bottom and under the water.
(c) Buoyancy is the same.
(d) It is impossible to tell.

11. A piece of ice is �oating in a glass of water. What will
happen to the level of water when the ice fully melts?

(a) It will increase.
(b) It will decrease.
(c) It will remain the same.
(d) It is impossible to tell.

12. A man inside a boat in a pool steps out of the boat into
the pool. What will happen to the water level of the
pool?

(a) It will increase.
(b) It will decrease.
(c) It will remain the same.
(d) It is impossible to tell.
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13. A metal block �oats half-submerged in a container full
of mercury. How will the level at which it �oats in the
mercury be a�ected when it is taken to the surface of
the Moon?

(a) The level will be higher.
(b) The level will be lower.
(c) The level will stay the same.
(d) It is impossible to tell.

14. Two immiscible liquids (water and mercury) are at equal
heights on two sides of a U-tube when the central valve
is closed. On which side will the level rise when the
valve is opened?

(a) On the water side.
(b) On the mercury side.
(c) The two sides will remain equal.
(d) It is impossible to tell.

15. A bird lands on a man sitting in a boat in a pool. What
will happen to the level of the water?

(a) It will rise.
(b) It will fall.
(c) It will remain the same.
(d) It is impossible to tell.

16. The viscosity force acting on a sphere moving at speed
v inside of a liquid depends on which of the following?

(a) The radius of the sphere.
(b) The speed of the sphere.
(c) The viscosity of the liquid.
(d) All of the above.

17. Two spheres with equal radius, one made of lead and
one made of wood, are dropped from the same height.
Assume that the drag force of the air on both is the same.
Which one reaches the ground �rst?

(a) The lead one.
(b) The wooden one.
(c) Both will reach the ground at the same time.
(d) It is impossible to tell.

18. In which cross-section of the pipe in the following �gure
is the speed greater?

(a) A (b) B (c) C (d) Equal

19. In which cross-section of the pipe in the �gure above is
the pressure greater?

(a) A (b) B (c) C (d) Equal

20. In which cross-section of the pipe in the �gure above is
the �ow rate greater?

(a) A (b) B (c) C (d) Equal

Problems

11.1 General Properties of Fluids

11.1 In a place where atmospheric pressure is 1.2 atm , an
open-ended gauge is used to measure the pressure of a gas
in a balloon. If the mercury column of the gauge indicates
40 cm , what are the absolute pressure and gauge pressure of
the gas? [A: 1.73 and 0.53 atm .]

11.2 Air density is 1.3 kg/m3 at sea level. What would the
thickness of the Earth’s atmosphere be if the density of air
did not decrease with height, remaining constant? (Hint: The
pressure on the surface is still 1 atm.) [A: 7.8 km .]

11.3 (a) What is the pressure at a depth of 1200 m below
the ocean? Calculate in terms of Pascal and atmosphere. (b)
What amount of force should the lens of a research camera
with an area of 1 cm2 be able to withstand at such a depth?

The density of sea water is ρ = 1030 kg/m3 .
[A: (a) 1.25 × 107 Pa , 123 atm , (b) 1250 N .]

Problem 11.4
11.4 An unknown liquid is added to the mercury column in
a U-tube with two open ends. Since the height of the mer-
cury is h1 = 6 cm and the height of the unknown liquid is
h2 = 68 cm , as seen in the �gure, calculate the density of the
liquid. [A: 1.2 g/cm3 .]
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Problem 11.5
11.5 The pressure in veins is called blood pressure. This is the
gauge pressure that is present in addition to the atmospheric
pressure. When a patient is fed with serum, the serum pres-
sure at the entry point into the body should be greater than
the blood pressure. The serum inside of the bottle shown in
the �gure has a density of 1040 kg/m3 . The liquid is able to
enter the blood only when the serum bottle is hung at a height
of 80 cm . Calculate the blood pressure (gauge pressure) of
the patient in terms of Pascal and cm Hg units.

[A: 8320 Pa, 6.2 cm Hg .]

11.6 In a hydraulic crane used to lift vehicles, the cylin-
der pushing the platform has a radius of 30 cm . The piston
pushing the liquid has a radius of 3 cm . How much force is
required to lift a 5-ton truck? [A: 500 N .]

11.7 The wall of a dam has a height of 210 m and a length
of 1100 m . Find the total force acting on the dam wall and
the torque that is trying to topple it over.

[A: 2.4 × 1011 N and 1.7 × 1013 N·m .]

11.2 Archimedes’ Buoyancy

11.8 What percentage of the volume of a wooden block with
density 0.7 g/cm3 will sink when placed in an oil with a
density of 0.92 g/cm3 ? [A: 76 % .]

11.9 An aluminum block with a density of 2.7 g/cm3 �oats
as partially submerged when placed in mercury with a density
of 13.6 g/cm3 . Water is poured on the mercury to make the
aluminum block become fully submerged. What percentage
of the block is underwater? [A: 87 % .]

Problem 11.10
11.10 A wooden block with a mass of 2 kg and a density of
400 kg/m3 is submerged by being tied to a rope at the bottom
of a container of water, as seen in the �gure. Calculate the
tension in the rope. [A: 30 N .]

11.11 What is the minimum volume of an ice layer that can
carry a car with a mass of 1000 kg on a lake? The density of
ice is 0.92 g/cm3 . (Hint: Consider that the ice �oats as fully
submerged at the limit condition.) [A: 12.5 m3 .]

Problem 11.12
11.12 The scale in the �gure shows 2.4 kg when a container
of water is placed on it. A piece of iron with a mass of 780 g
and a density of 7.8 g/cm3 is tied to a rope and suspended
inside of the water. What will the scale show? [A: 2.5 kg .]

Problem 11.13
11.13 An empty spherical shell made of plastic has an in-
ternal radius of 5 cm and an external radius of 6 cm . This
object �oats half-submerged when dropped into the water.
Calculate the density of the plastic. [A: 1.2 g/cm3 .]

11.14 A block suspended on a spring scale shows 1.4 , 1.9
and 2.5 kg , respectively, when suspended in water, oil and
an unknown liquid. As the density of water is 1000 kg/m3

and the density of oil is 900 kg/m3 , what is the density of
the unknown liquid? [A: 780 kg/m3 .]

11.5 Bernoulli’s Equation

Problem 11.15
11.15 The main pipe of a city’s water network, shown in the
�gure, has a cross-sectional area A1=3 m2 and another pipe
connected to it has A2=1 m2 . The water �owing through
cross-section A1 has a �ow rate of Q=15 m3/s . (a) Calculate
the �ow speed at each cross-section. (b) If the pressure is
P1=8 atm at the �rst cross-section, what will the pressure be
at the second? [A: 5 and 15 m/s , (b) 7 atm .]

Problem 11.16
11.16 The radii of the three separate cross-sections of the
pipe in the �gure are r1=3 , r2=2 and r3=5 cm . Considering
that the �ow velocity of the water at the �rst cross-section
is 2 m/s , calculate (a) the velocities in the other two cross-
sections and (b) the �ow rate of the water.

[A: (a) v2 = 4.5 , v3 = 0.72 m/s , (b) 0.006 m3/s .]

11.17 The �ow rate of water in a �re hose is constant at
1 m3/s . Water is to be sprayed on a �re located at a height
of 40 m using a metal nozzle attached to the end of the hose.
What should the maximum radius of the nozzle be such that
the water can reach the �re? [A: 0.11 m .]
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Problem 11.18
11.18 The Pitot tube in the wing of an aircraft contains alco-
hol. What is the speed of the aircraft with respect to the air
if the alcohol column rises by 32 cm? The density of alcohol
is 800 kg/m3 and the density of air is 1.2 kg/m3 .

[A: 65 m/s .]

Problem 11.19
11.19 Water is pumped with pressure P1=5 atm and a speed

of 3 m/s into a pipe with a cross-section area of 5 cm2 at the
entrance to a building. What are the speed and pressure of
the water �owing from a tap with a cross-section of 1.5 cm2

at a height of 12 m on the 3rd �oor?
[A: 10 m/s and 3.41 × 105 Pa = 3.37 atm. ]

Problem 11.20
11.20 Water is �owing at a speed of 3 m/s from the cross-
section of a pipe with an area A1=4 cm2 located at a height
of h=12 m . If the pressure at the top cross-section is 1.2 atm ,
what is the pressure at the bottom cross-section with an area
A2=5 cm2 ? [A: 2.4 × 105 Pa = 2.4 atm .]



12
TEMPERATURE AND HEAT

Temperature in shade can rise
up to 50 ◦C at the Sharqiya
Sands in Oman. Only camels
can survive such high temper-
atures.
What is the meaning of temper-
ature in terms of atoms? How
does temperature change lead to
changes in physical properties?

Up until now we have consistently examined the motion of a small number
of particles. However, this gets di�cult in systems with an enormous number of
particles. Consider a glass of water. There are approximately 1024 molecules in
this glass. In principle, we can write Newton’s laws for each molecule and �nd
the solutions. However, solving that great number equations will take years, even
with the fastest computers.

Suppose that we solved that many equations and found the positions and
velocities of each molecule. What purpose would that much information serve?
On the other hand, 3-5 quantities are su�cient to specify the state of a glass of
water: Temperature, volume, pressure, etc. These are quantities that specify the
system at hand as a whole, in other words, macroscopic quantities.

The branch of science that macroscopically examines the interactions of a
system with its surroundings is called Thermodynamics. We will learn the
basic concepts of thermodynamics in this chapter and apply them in the next
chapter.
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12.1 THERMODYNAMIC EQUILIBRIUM AND TEMPERATURE

Quantities that specify a system as a whole are called state variables. These
variables include temperature T , pressure P , volume V , mass m , and internal
energy E , which we will discuss later. No matter how complex the internal
structure of a macroscopic system is, it is possible to describe the system as a
whole using a limited number of state variables.

Consider a cup of tea. If we leave the tea as it is, it will start to cool down and
reach room temperature after a while. If we mix it using a spoon, the rotational
motion of the liquid will stop after a while. Likewise, if we put some sugar in
tea and mix it, the concentration of sugar will distribute evenly in the tea after a
while.

So, if the state variables of a system do not vary over time and have the same
value throughout the system, this state is called thermodynamic equilibrium.

Temperature
When we touch an object, we feel it to be “hot” or “cold.” Also, we know that,

if we put two samples of water of di�erent temperature into a container and wait,
their temperatures will become equal.

As the most basic thermodynamic quantity, temperature is the quantitative
measure of thermodynamic equilibrium. Let us take two objects A and B and
put them in contact with each other, insulating them from the external environ-
ment (Figure 12.1). These two objects will have equal temperature once they reach
thermodynamic equilibrium.

Figure 12.1: Two objects insu-
lated from the environment will
have equal temperature when
they reach equilibrium.

This de�nition speci�es temperature macroscopically. Microscopic de�nition,
however, is the subject of the branch of physics called Statistical Physics. Brie�y
stated, temperature is a measure of the average kinetic energy of molecules that
constitute a system.

Temperature Measurement – Thermometer
As the temperature of an object changes, another one of its quantities will

inevitably change as well. For example, a heated rod of iron will expand, the
pressure of a heated gas will increase and the electrical resistance of a heated
wire will increase. These changes help us to measure temperature and de�ne a
unit for it.

The instrument used to measure temperature is called a thermometer. The
most commonly known type is the mercury thermometer. The liquid mercury
inside of a chamber located at the bottom expands in proportion with the temper-
ature and rises in a column. Temperature can be calculated from the height of
the mercury column. (Today, dyed alcohol is used instead, because mercury is a
toxic substance.)

Figure 12.2: Types of ther-
mometer: mercury thermometer,
constant volume gas thermome-
ter, thermocouple.

Another type of thermometer is the constant-volume gas thermometer.
In this instrument, a gas inside of a glass chamber is trapped with mercury �lling
a U-tube (Figure 12.2). When the gas inside of the chamber is placed inside of
a liquid and heated, its volume and pressure increases. However, the mercury
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column is adjusted so that the volume remains constant and only the pressure
increases. The temperature can again be measured from the height of the mercury
column.

Yet another type of thermometer called a thermocouple, is used in technol-
ogy and laboratories. Thermocouple has two ends made of two di�erent metals
(copper, iron or tungsten) or alloys (constantan, alumel or nisil). A voltage di�er-
ence occurs between these two ends when one is kept at a standard temperature
(0◦ ) and the other one is brought to a di�erent temperature. The temperature is
determined by measuring this voltage, which is proportional to temperature.
Temperature Scales – Celsius, Fahrenheit, Kelvin

To de�ne a temperature scale, we must �rst decide on two reference temper-
atures that can easily be realized by anyone. A temperature scale is formed by
dividing the interval between these two temperatures into equal parts. There
are three commonly used temperature scales in everyday life, technology and
science: the Celsius ( ◦C ), the Fahrenheit ( ◦F ), and the Kelvin (K) scales.

In the Celsius scale, the freezing point of water under 1 atmosphere pressure
is taken as zero degrees Celsius (0 ◦C ) and the boiling point of water as 100 ◦C .
The distance between these two points is divided into 100 equal parts.

In the Fahrenheit scale, the freezing point of water under 1 atmosphere
pressure is taken as 32 degrees Fahrenheit (32 ◦F ) and the boiling point as 212 ◦F .
The distance between these two points is divided into 180 equal parts.

The conversion formula between the Celsius and Fahrenheit scales is:

TC = 5
9

(
TF − 32◦F

) (12.1)

The Celsius and Fahrenheit scales both require two constant points.
The absolute temperature scale, or the Kelvin scale, which requires only

one �xed point, was adopted in modern science. The unit of temperature in the
SI unit system is Kelvin and is indicated as K (the ◦ sign is not used). The �xed
point of this scale is the point called the triple point of water, at which all three
states (water-ice-steam) of water coexist. The property of the triple point is that
it occurs at a single value of temperature and pressure.

In the Kelvin scale, the temperature of the triple point is �xed as follows:

TK = 273.16 K (Triple point temperature) (12.2)

The relation between the Kelvin and Celsius scales is as follows:

TK = TC + 273.15 (12.3)

The di�erence in the last digit between these two formulas may seem odd, but
it is, in fact, correct, because the triple point of water is actually at temperature
0.01 ◦C . We will take it as zero in practice in this course:

0 ◦C ≈ 273 K 100 ◦C ≈ 373 K (in this course) (12.4)

The zero point of the Kelvin scale, in other words, the temperature −273.16 ◦C ,
Figure 12.3: Celsius and Kelvin
scales.

is the absolute zero of the universe. At this temperature, all motion stops in the
universe and lower temperatures are meaningless.
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12.2 HEAT

A pot of water starts to get warmer when put over the �re on a gas stove.
Here, the combustion energy of gas is transferred into the water. This energy can
be given to the water because the burning gas is hotter than water. Therefore,
the main reason for this energy transfer is temperature di�erence.

The type of energy that a system gives or receives due to a temperature
di�erence with its environment is called heat. Heat is indicated with Q .

The unit of heat is the Joule (J), because it is a measure of energy. The calorie
(cal) unit used in industry has the following value in terms of joules:

1 cal = 4.186 J

The expression “calorie” used for food in daily life is actually the kilo-calorie
(kcal) unit.

We must emphasize a point here: Heat is always something that is given or
taken. A system will not have heat as one of its properties, in other words, it is
wrong to say “the heat of the water”; it is proper to say “taken heat” or “given
heat.” In terms of thermodynamic language, heat is not a state variable.
Specific Heat

Objects use the heat that they receive in various ways: The temperature of
the object may increase, it may start to boil or expand, etc. Let us consider these
respectively.

Every object has a di�erent rate of temperature change upon heating. A
coe�cient called the speci�c heat is de�ned to indicate this feature. If Q is the
amount of heat required to increase the temperature of the mass m of an object
by ∆T , then the coe�cient

c =
Q

m ∆T
is called the speci�c heat of the object.

∆T = T2 − T1 is the temperature increase here. In other words, speci�c heat
is the amount of heat required to increase the temperature of 1 unit of mass per 1
unit of temperature. The unit of speci�c heat is J/kg·K .

Based on this de�nition, the amount of heat required for a ∆T increase in
temperature is expressed as follows:

Q = mc ∆T (12.5)

This formula is used in the technique called calorimetry. To �nd the �nal temper-
ature when di�erent liquids are mixed, the algebraic sum of received and given
heats is set to zero.

The speci�c heats of various materials are given in the following table. Speci�c
heat varies slightly with temperature, but can be taken as constant for small ∆T
variations.
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Speci�c heats
c c c c

(J/kg·K) (cal/g·◦C) (J/kg·K) (cal/g·◦C)

Copper 390 0.092 Water 4186 1.000
Aluminum 900 0.215 Ice 2100 0.5
Gold 129 0.030 Water vapor 2010 0.48
Silver 234 0.056 Ethyl alcohol 2400 0.58
Iron 448 0.107 Glass 837 0.200

Note that the highest speci�c heat in this table belongs to water. So much
energy is required to heat or cool water that it prevents sudden temperature varia-
tions in neighboring environments. In other words, water makes the surrounding
climate temperate.

Here, we de�ned speci�c heat per mass; molar speci�c heat, which is more
convenient for gases, will be de�ned later. In de�ning speci�c heat for gases,
separate speci�c heats are de�ned depending on the type of heating. The constant-
volume speci�c heat cV is de�ned if heating takes place under constant volume,
and the constant-pressure speci�c heat cP is de�ned if it takes place under
constant pressure.
Latent Heat

If we continue to heat water at 100◦ C it will start to boil. The system
will continue to receive heat during this change of state, but surprisingly, its
temperature will not change. The received heat is used to convert water at 100◦ C
into vapor at 100◦ C . This is called a change of phase.

Another phase change is observed during the melting of ice. If we give heat
to ice at 0◦ C , it will start to melt and turn into water at 0◦ C . We say that there
is a latent heat if no temperature change occurs during a phase change.

Figure 12.4: Temperature al-
ways remains constant when
water boils.

The heat received or given by a unit mass of a system during a change of
phase is called the latent heat. Latent heat is indicated with L . According to
this de�nition, the heat received or given by an object with mass m is

Q = m L ( L : Latent heat) (12.6)

L will have a positive sign if the object is vaporizing or melting, and a negative
one if it is condensing or freezing. The heat received by the system is always
considered to be positive. Although many types of latent heats are de�ned in
thermodynamics, here we will only consider the latent heat of fusion (melting)
and the latent heat of vaporization. Some latent heats of fusion and vaporization
are provided in the following table:
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Latent heats of fusion and vaporization
Fusion Heat of fusion Boiling Heat of vaporization

point point
(◦C) (cal/g) (kJ/kg) (◦C) (cal/g) (kJ/kg)

Water 0 80 333 100 540 2260
Ethyl alcohol −114 25 104 78 204 850
Lead 327 6 25 1750 208 870
Silver 961 21 88 2193 558 2300
Tungsten 3410 44 184 5900 1150 4800

Example 12.1

(Note: The speci�c heats required in the problems in this chapter
will be taken from the tables above.)
(a) Convert the temperatures 100 ◦F and −30 ◦F into ◦C .
(b) Convert the temperatures 100 ◦C and −30 ◦F into Kelvin

units.

Answer
(a) We subtract 32 from the Fahrenheit value, divide by 9 and

multiply by 5, obtaining the following:
TC = 5

9 (TF − 32◦F)
For TF = 100 ◦F , TC = 38 ◦C
For TF = −30 ◦F , TC = −34 ◦C

(b) Celsius temperatures are converted into Kelvin by adding
273:

For TC = 100 ◦C , TK = 100 + 273 = 373 K
For TC = −30 ◦C , TK = 243 K .

Example 12.2

How much heat is required to increase the temperature of iron
with a mass of 250 g from 20 ◦C to 80 ◦C?

Answer
We use the formula (12.5):

Q = mc ∆T

It is more convenient to make such calorimetry calculations
in calorie and gram units. At the end of the calculation, we
can take 1 cal = 4.18 J and convert it into the joule unit.
The speci�c heat of iron is given as c=448 J/kg=0.11 cal/g in
the table. We calculate by substituting the numerical values:

Q = 250 × 0.11 × (80 − 20) = 1650 cal
Q = 1650 × 4.18 = 6900 J .

Example 12.3

200 g -water at a temperature of 20 ◦C is mixed with 100 g -
alcohol at a temperature of 30 ◦C . What will the �nal temper-
ature of the mixture be?

Answer
We take the speci�c heat of water from the table as c1=1 cal/g
and that of alcohol as c2=0.58 cal/g . If we show the �nal
temperature with T , the algebraic sum of the heats received

by the water and the alcohol should be zero:
Q1 + Q2 = 0

m1c1(T − T1) + m2c2(T − T2) = 0
Notice that one of the received heats ( Q2 ) will be negative.
We calculate the �nal temperature by substituting the num-
bers:

200 × 1 × (T − 20) + 100 × 0.58 × (T − 30) = 0
T = 22 ◦C .

Example 12.4

How much heat is required to turn a block of ice with a mass of
50 g at a temperature of −30 ◦C into water at 20 ◦C?

Answer
In this problem, latent heat is also required during the melting
of the ice. From the table, we take the latent heat of fusion
as L = 80 cal/g and the speci�c heat as c1 = 0.5 for ice and
c2 = 1 cal/g for water.

Let us write the stages of the whole process:
Ice at −30 ◦C → ice at 0 ◦C → water at 0 ◦C →

→ water at 20 ◦C .
We write the heats required at each stage and add them up:

Q = mc1[0 − (−30)] + mL + mc2(T − 0)
We calculate the result by substituting the numerical values:

Q = 50 × [0.5 × 30 + 80 + 1 × 20]
Q = 5750 cal .
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Example 12.5

Some amount of water vapor at a temperature of 110 ◦C is
mixed with a block of ice with a mass of 30 g at a temperature
of −20 ◦C in an insulated container. How much vapor was
used, considering that the �nal temperature of the mixture is
20 ◦C? (The mass of the container can be neglected.)

Answer
As they all turn into water in the end, the ice and the water va-
por have undergone phase changes to reach their �nal states.
From the table, we take the values for latent heat of fusion as
L1=80 cal/g , the latent heat of vaporization as L2=540 cal/g ,

the speci�c heat of ice as c1=0.5 , of water as c=1 and of
vapor as c2=0.48 cal/g .
The heat received by the ice with mass m1 is set to be equal
to the heat given by the vapor with mass m2 :

Q1 = Q2

m1c1[0 − (−20)] + m1L1 + m1c(20 − 0) =

= m2c2(110 − 100) + m2L2 + m2c(100 − 20)
We �nd the amount of vapor by substituting the numbers:

30 × [0.5 × 20 + 80 + 1 × 20] =

m2[0.48 × 10 + 540 + 1 × 80
m2 = 5.3 g .

Example 12.6

100 g of ice at a temperature of −10 ◦C is put inside 500 g
water at a temperature of 0 ◦C in an insulated container. What
will the �nal state be?

Answer
The fact that the amount of ice increases in this problem may
seem odd at �rst glance, but it is true. Ice (at −10 ◦C ) will
receive heat from water because it is colder. Water at 0 ◦C
can only give heat by turning some of it into ice.
Let us assume that the �nal temperature will be 0 ◦C , with
water and ice coexisting. We set the heat received by the ice

with mass m1 as equal to the heat given by some m2 amount
of water turning into ice. (If, at the end of the calculation,
this value of m2 turns out to be higher than the total amount
of water, it means that the �nal temperature will be less than
zero. In that case, we will use a di�erent route.) There follows:

m1c1[0 − (−10)] = m2L
We calculate by taking the speci�c heat of ice as c1=0.5 cal/g
and the latent heat of fusion as 80 cal/g :

100 × 0.5 × 10 = m2 × 80 → m2 = 6.3g .
According to this result, there will be 100 + 6.3 = 106.3 g
of ice and 500 − 6.3 = 493.7 g of water at a temperature of
0 ◦C in the container.

12.3 THERMAL EXPANSION

We know from our daily lives that heated objects increase their volume, or
expand. We have seen that the mercury heated inside of a mercury thermometer
expands when heated, cables in electrical transmission lines sag on hot days,
heated balloons expand, etc. Expansion may sometimes produce unintended
results (Figure 12.5). A margin is left in the construction of building, bridges and
roads in order to account for this.

If an object with length L0 at a reference temperature T0 , has the length L
at another temperature T , its linear expansion ∆L = L − L0 will be proportional
to the increase in temperature ∆T = T − T0 and to its initial length L0 :

∆L = αL0 ∆T

Here, α is the coe�cient of linear expansion and depends on the type of
Figure 12.5: Railroad tracks
that have expanded due to heat
on the Delaware river (1935).

material. Its unit is (1/◦C) or (1/K) . If we write this formula in terms of the �nal
length L of the object, we get

L = L0 + ∆L

L = L0 [1 + α(T − T0)] (12.7)

The coe�cient α is taken as a constant in calculations, although it varies slightly
with temperature.

A similar behavior is observed in volume expansion. The increase in volume
∆V caused by temperature increase ∆T is

∆V = βV0 ∆T (12.8)
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and the constant β is called the coe�cient of volume expansion. Rigid bodies
have the same expansion property in three dimensions, therefore the relation
between the α and β coe�cients is as follows:

β ≈ 3α (12.9)

The expansion coe�cients of some materials are given in the following table:

Coe�cients of linear and volume expansion of materials at 20 ◦C
Solids α (◦C)−1 Liquids and gases β (◦C)−1

Copper 17 × 10−6 Water 2.1 × 10−4

Iron or steel 12 × 10−6 Ethyl alcohol 11 × 10−4

Aluminum 23 × 10−6 Mercury 1.8 × 10−4

Concrete 12 × 10−6 Gasoline 9.5 × 10−4

Glass 9 × 10−6 Air 34 × 10−4

The most striking feature in this table is the fact that the expansion coe�cients
of iron, steel and concrete are equal. The fact that buildings made of steel and
concrete can withstand very high temperature changes without cracking is only
possible with this property of concrete.

Examining the table, the expansion coe�cients of iron and concrete may
seem to be small (on the order of one ten thousandths), but this may result in
considerable expansion. In a climate with a [−20,+40 ◦C] temperature range,
such a di�erence in length means 1 cm per 10 meters. This is taken into account
in the construction of buildings, bridges and railroads with margins being left.

Figure 12.6: Expansion margin
in a bridge.

Also note that, in the table, the expansion coe�cient of alcohol is much
greater than those of water and mercury; this is why alcohol is preferred in
thermometers. Gasoline is also observed to expand as much as alcohol. For this
reason, an expansion margin should always be left in the tank of vehicles when
�lling with gasoline.

Anomalous behavior of water: The expansion of water exhibits an unusual
behavior in the temperature range [0, 4 ◦C] . The volume of water at 0 ◦C starts
to decrease when heated. This anomalous behavior continues until 4 ◦C . Then,
it starts to expand with temperature. In other words, water is densest at 4 ◦C .
This property allows �sh and other living beings to stay alive under ice in frozen

Figure 12.7: This is how life
goes on in lakes during winter.

lakes. This unusual behavior of water is caused by the special structure of H2O
molecules.

Example 12.7

A steel bridge with a length of 1200 m at 0 ◦C will expand by
how much in length at 50 ◦C?

Answer
We use the formula (12.3), giving the increase in length:

Example 12.8

A copper vessel with a volume of 5 liters at 20 ◦ C is completely

�lled with water and heated on an stove. How much water will
spill at a temperature of 95 ◦C?

∆L = αL0 ∆T
The coe�cient of expansion of steel is given as α=12 × 10−6

in the table. We substitute the values:
∆L = 12 × 10−6 × 1200 × ( − 0)
∆L =

50
m = cm0.72 72
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Answer
When two objects expand together, it is more convenient
to work with (α2 − α1) , the di�erence of their expansion
coe�cients.
Accordingly, if we use ∆V1 to indicate the increase in the
boiler’s volume and ∆V2 for the increase in the water’s vol-
ume, according to the formula (12.8), we get

∆V2 − ∆V1 = β2V0 ∆T − β1V0 ∆T

The coe�cient of volume expansion is β ≈ 3α in terms of
linear expansion. From here, the expression for the di�erence
in volumes becomes:

∆V2 − ∆V1 = 3(α2 − α1)V0 ∆T
We �nd α coe�cients for copper and water from the table
and substitute to calculate the result:

∆V2 −∆V1 = 3× (210−17)×10−6 ×5×10−3 × (95−20)
∆V2 − ∆V1 = 0.00022 m3 = 220 cm3

Example 12.9

A simple pendulum used to measure time is made of a mass
attached to the end of a steel wire. The period of the pendulum
correctly shows 1 s when the temperature is 0 ◦C . Calculate
how much time the clock will lose or gain in 1 day in a hot
country where the average temperature is 40 ◦C?

Answer
(a) We had calculated the period of a simple pendulum in
Chapter 9 (Eq. 9.23). However, let us use t here to show the
period so that it will not get confused with the temperature
T :

t = 2π
√

L/g

Let us take the ratio of periods t0 and t at temperatures
0 ◦C and 40 ◦C , respectively, and use the thermal expansion
formula:

t
t0

=

√
L
L0

=

√
L0(1 + α∆T )

L0
=
√

1 + α∆T

We take α = 12 × 10−6 for steel and t0 = 1 s and calculate
the new period for the temperature di�erence ∆T=40 ◦C :

t − t0 =
√

1 + 12 × 10−6 × 40 − 1 = 24 × 10−6 s
This di�erence is calculated for one day:

24 × 3600 × (t − t0) = 20 s
The pendulum lags by 20 s per day.

Example 12.10

A steel ruler measures correctly at a temperature of 0 ◦C . This
ruler is used to measure the length of an aluminum rod at a
temperature of 0 ◦C and it reads as 2.800 m . (a) How much
will the ruler measure the length of the aluminum rod when
the temperature of both the steel ruler and the aluminum rod
is increased to 400 ◦C? (b) How much has the length of the
aluminum rod really expanded?

Answer
(a) This problem can be solved in various ways: We �nd the
amount of expansion of the steel and aluminum and then
�nd their proportion. However, the easier method is to work
with the coe�cient di�erence (α2−α1) for jointly expanding
objects:
Of the two objects with the same length L0=2.8 m , if the
coe�cient of expansion of the steel ruler is α1L0 ∆T and that

of the aluminum rod is α2L0 ∆T , then the di�erence in ex-
pansion will be (α2−α1)L0 ∆T . We can reach the same result
by considering that the steel ruler is not expanding, but the
aluminum rod is expanding with a coe�cient of (α2 − α1) .
However, this time, the marks of the steel ruler will remain
at the same place and correctly show the relative expansion
of the aluminum.
Therefore, we calculate the relative expansion of aluminum
using the coe�cient (α2 − α1) :

L = L0 [1 + (α2 − α1) ∆T ]
We look up the expansion coe�cients from the table and
calculate:

L = 2.800 × [1 + (23 − 12) × 10−6 × 400] = 2.812 m
The expanded ruler shows the length of the expanded rod as
2.812 m .
(b) We calculate the absolute expansion of the aluminum:

L = L0 [1+α2 ∆T ] = 2.8[1+23×10−6×400] = 2.826 m .

12.4 HEAT TRANSFER

The conduction of heat from one medium to another can take place through
three di�erent mechanisms: conduction, convection and radiation. In conduction,
heat is conducted without any displacement of matter. In convection, heat is
transferred by the displacement of material. And in radiation, heat is conducted
through electromagnetic waves.

Now let us examine in turn these mechanisms:
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Conduction
If we hold a copper rod at one end and place the other end on the heat of a

stove, we will soon feel heat in our hand. This is because, heat is transmitted
through conduction from one end to the other end of the rod. We have to examine
this at the atomic level to understand how it occurs.

There are two separate mechanisms for heat transmission at the atomic level:

• Lattice vibrations (Figure 12.8a): Copper atoms may only oscillate about
their �xed positions. However, their vibration amplitude, and thus their
energy, increases with the heat that they receive. They transmit some of this
energy to their neighboring atoms. A vibration wave thus reaches one end
of the copper from the other end.

• Free electrons (Figure 12.8b): As we will discuss when addressing electricity
(Section 14.1), some of the electrons in the atoms of conductors, such as copper
and steel, become free in a solid medium. They therefore carry energy by

Figure 12.8: freely traveling from one end of the copper to the other. (This is why metals
that are good electric conductors are also good heat conductors.)

The amount of heat transferred by a medium depends on many factors: the
thickness of the medium, temperature di�erence, etc. To examine this, let us
consider a medium with thickness ∆x and cross-section area A (Figure 12.9). Let
one of the surfaces of this medium be kept at temperature T1 and the other at
temperature T2 . Accordingly, the amount of heat Q transferred from one region
into the other in time t is

Q
t

= k A
∆T
∆x

(12.10)

The coe�cient k here depends on the type of material and is called the thermal
Figure 12.9: Heat transfer
through conduction.

conductivity. Its unit is watt/m·◦C . The ratio of the temperature di�erence
∆T = T2 − T1 to the thickness ∆x in this formula is called the temperature
gradient ∆T/∆x .

Thermal conductivities of some materials are given in the following table:

Thermal conductivities of some materials
k (W/m·◦C) k (W/m·◦C)

Lead 35 Air 0.024
Iron 80 Wood 0.1
Aluminum 238 Water 0.6
Copper 397 Glass 0.8
Silver 427 Concrete 0.8

The larger the coe�cient k is, the better the heat is transferred. We want heat
conductivity to be low or high when selecting a material for any job in technology
or daily life. A material with good heat conductivity is required for heating food
on a stove. For this reason, we use copper and aluminum pots. On the other hand,
poor conducting materials should be used to insulate houses against the cold and
prevent heat losses. Therefore, glass (or, even better, double glazing with a layer
of air between two glass panes) is used.
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As seen in the table, metals such as copper, silver and aluminum, that are
good electrical conductors are also good heat conductors. This is because the
free electrons in the structure of metals also conduct energy while conducting
electrical charge.

Figure 12.10: The supercon-
ductor aerogel developed by
NASA.

The table shows that air is a poor conductor. This is true for still air. Hence, the
air trapped in double glazing or the material called styrofoam severely decreases
the heat conductivity of that material. The super insulators recently developed in
the aeronautics industry are also spreading into our daily life (Figure 12.10).
Convection

We cool o� with the cool air blown by a fan or an air conditioner on a hot day.
Here, heat is transferred by the motion of air molecules. Heat transfer through
the displacement of matter is called convection.

Convection can occur in two ways. The air heated around a stove or heater
will expand to have less density, and thus, start to rise. It is replaced by the cooler
air above, which also soon gets heated and rises. A convection current is thus
formed automatically. This is called natural convection.

The second type of convection is forced convection. The cool air generated by a
fan or air conditioner is pushed in the desired direction by a fan motor. Although
still air is a poor conductor, it turns into a good conductor through convection.

The most important example of convection is the currents formed in the
atmosphere and the oceans. The natural convections of air and water are two of
the most important factors that make all kinds of life possible.

Figure 12.11: Air convection in
a heated room.

The detailed examination of convection is complex, and the transferred heat
depends on many factors, such as type of material, velocity distribution, pressure
and temperature conditions in the environment, etc. It is examined in detail in
the branch of science called Fluid Mechanics.
Radiation

The third heat transfer mechanism is the type of heat transferred through
electromagnetic waves. Its most important feature is its ability to transfer heat
in vacuum, without the presence of material in the medium. The solar rays that
pass through the empty space between the Earth and the Sun, which has no
conducting medium, to heat the Earth and are the source of all life.

All bodies radiate at every temperature. However, we can only see that part
Figure 12.12: Radiation of hot
coal.

that is in the visible light spectrum. Pieces of coal in a grill radiate by emitting red
light. When the coals cool down, the radiation continues as infrared waves, but
we cannot see them. Today, binoculars and cameras that operate with infrared
rays can be used to view the radiation of all objects.

The relation between radiated energy and heat is given by the Stefan-
Boltzmann law:

Q
t

= σ A ε T 4 (Stefan-Boltzmann law) (12.11)

Here, A is the surface area of the object and T is the temperature in Kelvin units.
As for the other two coe�cients, σ = 5.7×10−8 W/m·K4 , the Stefan-Boltzmann
constant is the same for all objects. The other dimensionless coe�cient ε is called
emissivity. This is a parameter that can take values within the range [0, 1] and
depends on the type of radiating material.

The transfer of radiated energy between bodies with di�erent temperatures
is obtained using this formula. If a body with temperature T1 is kept in an
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environment with temperature T2 , the radiated power is

Q
t

= σ A ε
(
T 4

1 − T 4
2

)
(12.12)

It is remarkable that the radiated energy is proportional to the fourth power of

Figure 12.13: A cat in the night
through infrared binoculars.

temperature. Heat losses through radiation increase to a tremendous degree at
high temperatures.

Heat transfer is a very extensive topic. It will be su�cient in this course to
know only the basic concepts.

12.5 IDEAL GAS

Gases have a special place in thermodynamics, because they can easily ex-
change heat and energy with their environment over a wide range of temperature
and pressure. For this reason, they play a role in many �elds of industry, through
the use of gas fuels, gas turbines, steam boilers, etc. In this section, we will discuss
the basic concepts that describe the properties of gases.
Avogadro’s Number and Mole

A constant called Avogadro’s Number is used to specify the amount of
material in terms of atomic scale. The value of this number is:

NA = 6.022 × 1023 (Avogadro’s number) (12.13)

The amount of a material containing Avogadro’s number of atoms (or molecules)
is called 1 mole (symbol: mol). In other words, 1 mole of carbon contains NA

number of carbon atoms, and 3 mole of water contains 3NA number of H2O
molecules.

The number of moles in a given amount of gas is indicated with n . Accord-
ingly, if the given number atoms (or molecules) of a substance is N , the amount
of moles n that it contains is:

n =
N
NA

The total mass of 1 mole of atoms (or molecules) of a substance is called the
molar mass and is indicated with M . If the given mass of a substance is m , the
amount of moles n that it contains is found as follows:

n =
m
M

For example, to �nd the number of moles in 100 grams of oxygen (O2) , we divide
it by the molar mass of oxygen M = 32 g :

n =
m
M

=
100 g
32 g

= 3.125 mol

The molar masses of some materials are given in the following table:
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Molar masses of some materials
Gases M (gram/mole) Solids and liquids M (gram/mole)

Hydrogen (H2) 2 Water (H2O) 18
Helium (He) 4 Aluminum (Al) 27
Oxygen (O2) 32 Iron (Fe) 56
Nitrogen (N2) 28 Copper (Cu) 64
Argon (Ar) 40 Silver (Ag) 108
Carbon dioxide (CO2) 44 Mercury (Hg) 201
Air 29 Lead (Pb) 207

Ideal Gas Law
It is impossible to exactly determine the microscopic behavior of a gas, be-

cause it contains approximately Avogadro’s number of molecules. However,
working with the ideal gas assumption gives us very good results that are
close to experimental reality. As a de�nition, the ideal gas is one in which the
intermolecular interactions are neglected. For this, the gas must have low pressure
and high temperature.

The equation that determines the relation between the mass, temperature,
volume and pressure of a gas in any state is called the equation of state. The
equation of state for ideal gas, also called the ideal gas law, is as follows:

P V = n R T (Ideal gas law) (12.14)

Here, P is the pressure, V is the volume, n is the number of moles and T is the
temperature in Kelvin units. The proportionality constant indicated with R is
called the universal gas constant and its value is

R = 8.31 J/mol·K (universal gas constant) (12.15)

The constant R is also expressed as follows for use in practical calculations in
which the pressure is given in atmosphere units and the volume in liter units:

R = 0.082 liter·atm/mol·K (12.16)

If the mass m of the gas is given, taking its mole number as n = m/M , the ideal
gas law can also be expressed as follows:

P V =
m
M

R T (12.17)

If we wish to write the density ρ of the gas, we form the ratio ρ = mass/volume =

m/V in the last equation:
ρ =

m
V

=
MP
RT

(12.18)

The ideal gas law allows us to see which quantity will vary when the state of a gas
changes. For example, if the volume V of the gas is kept constant, the pressure
will increase with the temperature. Likewise, when the pressure is kept constant, Figure 12.14: Isothermal

curves.the volume of the gas will increase with the temperature.
When the temperature is kept constant, we get what is called isothermal curves

(Figure 12.14). In isothermal changes, volume and pressure change inversely: One
of them decreases when the other increases.
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Example 12.11

(The table on Page 211 will be used for the molar masses required
in these problems.)
(a) The molar mass of copper is 64 g . How many moles does

100 g of copper contain?
(b) How many molecules does 100 g of oxygen contain?

Answer
(a) The number of moles is the number of M molar masses

in the mass m :
n =

m
M

=
100
64

= 1.6 moles .
(b) A mole of mass contains NA Avogadro’s number of
molecules. From the given mass, we calculate the number of
moles n and then the number of molecules N . The molar
mass of oxygen is 32 g , and we �nd the number of molecules
as follows:

N = n NA =
m
M

NA =
100
32
× 6.02 × 1023 = 19 × 1023

Example 12.12

A container with a volume of 8 liters has 10 g of hydrogen gas
(H2 ) at a temperature of 27 ◦C .
(a) How many moles of hydrogen are there in the container?
(b) What is the pressure of the gas?

Answer
(a) We divide the given mass with the molar mass 2 g of H2 :

n =
m
M

=
10
2

= 5 moles .
(b) We solve the ideal gas law (12.14) for the pressure P :

PV = n RT → P =
nRT

V
Taking the constant R in units of liters × atmosphere will be
very convenient in these calculations:

R = 0.082 liter·atm/mol·K
We substitute the number of moles and the other data we
found in the previous item into the ideal gas law and calcu-
late the pressure. Do not forget to convert temperature into
kelvins.

P =
nRT

V
=

5 × 0.082 × (273 + 27)
8

= 15 atm

Example 12.13

(a) How much volume will 1 mole of ideal gas hold at standard
temperature and pressure (STP)?
(b) What is the density of 1 mole of oxygen (O2 ) under STP
conditions?

Answer
(a) The reference point called STP (standard T and P ) for
gases refers to 0 ◦C temperature and 1 atm pressure. In such
a case, we calculate the volume of 1 mole of gas using the
ideal gas law:

V =
nRT

P
=

1 × 0.082 × 273
1

= 22.4 liters
All ideal gases have the same volume of 22.4 liters at STP.

(b) We use Eq. (12.17), which gives the ideal gas law in terms
of masses:

P V =
m
M

R T

In this equation, we form density as ρ = m/V :

ρ =
m
V

=
MP
RT

We take the STP temperature as 273 K and the pressure as
1 atm and use the molar mass of oxygen, which is 32 g . Using
the constant R in units of liters×atmospheres here, the other
units simplify, and we get the density in terms of grams/liter:

ρ =
32 × 1

0.082 × 273
= 1.43 g/liter

Example 12.14

Air is present under STP conditions in a room with volume
6 × 10 × 4 m3 .
(a) How many moles of air is present in the room?
(b) How many moles of air is left in the room if it is heated

up to 27 ◦C?

Answer
(a) We solve the ideal gas law for the number of moles n :

PV = nRT → n =
PV
RT

Let us calculate in terms of the SI units this time. The volume
of the room is 6 × 10 × 4=240 m3 and, in STP conditions,
1 atmosphere of pressure equals 1 atm=1.013 × 105 Pa in

terms of pascals, and we take the universal gas constant as
R=8.31 J/mol·K :

n =
PV
RT

=
1.013 × 105 × 240

8.31 × 273
= 10 700 mol

(b) Using ratios is very convenient in problems that involve
state changes of a gas. We write the ideal gas law for each tem-
perature and compare them. As the pressures and volumes
are equal, we get
XXXP2V2
XXXP1V1

=
SRn2T2

SRn1T1
→ n2 =

T1

T2
n1

We substitute the values and calculate as follows:

n2 =
273
300
× 10700 = 9740 mol
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Example 12.15

The cylinder of a diesel motor with a volume of 4 lt contains air
at a temperature of 27 ◦C and a pressure of 1 atm . The piston
is pushed to decrease the volume of the air by a factor of 16 and
increase the pressure by a factor of 40 .
(a) How many moles of air does the cylinder contain?
(b) What will be the �nal temperature of the air?

Answer
(a) We calculate the number of moles from the ideal gas law:

n =
PV
RT

=
1 × 4

0.082 × 300
= 0.16 moles .

(b) If we indicate the initial variables with (P1,V1,T1) and
the �nal variables with (P2,V2,T2) , we can write the ideal
gas law for each state and divide on both sides:

P2V2

P1V1
=
HHnRT2

HHnRT1
=

T2

T1

We solve this expression for the �nal temperature T2 :
T2 =

P2V2

P1V1
T1

We calculate the �nal temperature by substituting the numer-
ical values:

T2 =
40
1
×

1
16
× 300 = 750 K

Example 12.16

A cylinder contains an ideal gas at a temperature of 27 ◦C and
a pressure of 5 atm . The gas is subject to the following processes
after the same initial state each time:

(a) Its volume is increased by a factor of 3 by heating under
constant pressure. What will its �nal temperature be?

(b) This time its pressure is increased by a factor of 4 by heat-
ing under constant volume. What will its �nal temperature
be?

(c) It is heated such that both its pressure and volume increase
by factors of 3. What will its �nal temperature be?

(d) Its absolute temperature is doubled by heating under con-
stant volume. What will its �nal pressure be?

Answer
(a) It is su�cient to establish the ratios in this problem. If
we write the ideal gas law twice for each process, only the
changing variables will remain in the formulas.
The ratio is as follows for heating under constant pressure:

PV2

PV1
=

nRT2

nRT1
→

V2

V1
=

T2

T1

From here, we calculate the �nal temperature:
T2 =

V2

V1
T1 = 3 × T1 = 3 × 300 = 900 K .

(b) The ratio of the change under constant volume is found
the same way:

P2

P1
=

T2

T1

T2 =
P2

P1
T1 = 4 × 300 = 1200 K .

(c) The ratio is as follows when both the pressure and the
volume change:

P2V2

P1V1
=

T2

T1

T2 =
P2V2

P1V1
T1 = 3 × 3 × 300 = 2700 K .

(d) The ratio for heating under constant volume was found
in item (b):

P2

P1
=

T2

T1
−→ P2 =

T2

T1
P1 = 2 × 5 = 10 atm .

Multiple-choice Questions

1. How many ◦C is a temperature of 373 K?
(a) 0 ◦C (b) 73 ◦C (c) 100 ◦C (d) 173 ◦C

2. Which of the following is not a unit of temperature?
(a) Fahrenheit
(b) Kelvin
(c) Centigrade
(d) Celsius

3. How will a pendulum clock made of metal wire show
the time when temperature increases?

(a) It will lag.
(b) It will run too fast.
(c) It will not change.
(d) It is impossible to tell.

4. The speci�c heat of iron is approximately twice the spe-
ci�c heat of silver. How will their temperatures increase
if the same amount of heat is given to pieces of iron and
silver with the same mass?

(a) The iron will heat up more.
(b) The silver will heat up more.
(c) They will heat up equally.
(d) It is impossible to tell.

5. Two quantities of waters with equal mass at tempera-
tures of 20 ◦C and 50 ◦C are mixed. What will the �nal
temperature be?
(a) 25 ◦C (b) 30 ◦C (c) 35 ◦C (d) 40 ◦C

6. The absolute temperature of a gas in a container is dou-
bled under constant volume. What will its pressure be?
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(a) 2P (b) 4P (c) P/2 (d) P/4

7. The absolute temperature of a gas in a container is dou-
bled under constant pressure. What will its volume be?

(a) 2V (b) 4V (c) V/2 (d) V/4

8. The volume of a gas in a container is doubled under
constant temperature. What will its pressure be?

(a) 2P (b) 4P (c) P/2 (d) P/4

9. The pressure of a gas in a container is doubled and its
volume is halved. What will its temperature be?

(a) 2T (b) 4T (c) T (d) T/2

10. A gas at a pressure of 1 atm in a container of volume
V has its temperature increased from 0 ◦C to 273 ◦C at
constant pressure. What will its volume be?

(a) V (b) 2V (c) V/2 (d) 4V

11. Which of the following is incorrect?
(a) The volume of a heated ice will decrease.
(b) Water heated at 10 ◦C will expand.
(c) Heated water vapor will expand.
(d) Water heated at 2 ◦C will expand.

12. If thermal expansion coe�cients are sorted in increasing
order, which sorting will be correct?

(a) Solid→liquid→gas.
(b) Liquid→solid→gas.
(c) Solid→gas→liquid.
(d) Gas→liquid→solid.

13. How many grams of substance are there in 2 moles of
hydrogen (H2 )?

(a) 1 g (b) 2 g (c) 4 g (d) 10 g

14. How many moles of hydrogen gas (H2 ) are there in 10 g
of hydrogen?

(a) 1 (b) 2 (c) 5 (d) 10

15. How many atoms are there in 16 g of oxygen (O2 ) in
terms of Avogadro’s number NA ?

(a) NA (b) 2NA (c) 3NA (d) 8NA

16. Which of the following is not the ideal gas law?

(a) PV
nT

=R (b) P=
nRT

V
(c) V=

P
nRT

(d) V=
nRT

P

17. Which of the following is correct when ice at 0 ◦C is
heated?

I. Its temperature will increase.
II. It will melt under constant temperature.
III. Its volume will decrease.
IV. Its volume will increase.

(a) I & II (b) I & IV (c) II & III (d) II & IV

18. Which of the following is correct if a system is in ther-
modynamic equilibrium with its surroundings?

(a) The temperatures are equal.
(b) The pressures are equal.
(c) The volumes are equal.
(d) All of the above.

19. Under which conditions do real gases approach the ideal
gas model?

(a) Low pressure and low temperature.
(b) Low temperature and high pressure.
(c) High temperature and low pressure.
(d) High temperature and high pressure.

20. Which of the following are types of latent heat?
I. Speci�c heat.
II. Heat of fusion.
III. Heat of vaporization.

(a) I (b) I & II (c) II & III (d) I & III

Problems

12.2 Heat
(Note: In the problems of this section the containers are assumed
to be insulated and have zero speci�c heats.)

12.1 How much heat is required to turn 100 g of water at
30 ◦C into steam at 120 ◦C? [A: 63 kcal .]

12.2 600 g of water at a temperature of 90 ◦C is added to
400 g of water at a temperature of 20 ◦C in a container. What
will the �nal temperature be? (The container is thermally
insulated and its speci�c heat is negligible.) [A: 62 ◦C .]

12.3 An aluminum block of 200 g at a temperature of 300 ◦C
is put into 300 g of water at a temperature of 20 ◦C in a con-
tainer. What will the �nal temperature be? [A: 55 ◦C .]

12.4 Some amount of ice at a temperature of −40 ◦C is put
together with 10 g of steam vapor at a temperature of 120 ◦C
in an insulated container. How much ice was used if the �nal
temperature of the mixture is 30 ◦C? [A: 48 g .]

12.5 A 600 g piece of iron at a temperature of 500 ◦C is put
into 100 g of water at a temperature of 30 ◦C in a container.
How much of the water will evaporate? [A: 35 g .]
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12.6 A 200 g piece of iron at a temperature of 400 ◦C is put
together with 50 g of ice at a temperature of −10 ◦C in an
insulated container. What will the �nal state be?

[A: Water and iron at 60 ◦C .]

12.7 400 g of vapor at a temperature of 150 ◦C is mixed
with water with a mass of 100 g at a temperature of 100 ◦C
in an insulated container. What will the �nal state be?

[A: 82 g of water and 418 g of vapor at 100 ◦C .]

12.3 Thermal Expansion
(Note: Expansion coe�cients that may be needed in the prob-
lems of this section shall be taken from the table on Page 206.)

12.8 A steel tower with a height of 800 m at 0 ◦C will expand
by how much at a temperature of 40 ◦C? [A: 38 cm .]

12.9 A glass tube with a base area of 1 cm2 and a height of
1 m is fully �lled with mercury at 0 ◦ C . How much mercury
will spill when the temperature is 150 ◦C? [A: 2.3 cm3 .]

12.10 A physical pendulum made of an aluminum rod of
length 1 m is used to measure time. The period of the pen-
dulum is 1 s at a temperature of 0 ◦C . How much error will
accrue in the pendulum’s measurement in one day when the
temperature becomes 50 ◦C? (The period of a physical pen-
dulum of length L is T = 2π

√
2L/3g .)

[A: It will lag by 50 s .]

Problem 12.11
12.11 A steel bridge consists of two parts, each with a length
of 150 m and hinged to each other at the center. The bridge
can stretch �at in the horizontal position at 0 ◦C . By how
much will the central point rise when the temperature is
50 ◦C? [A: 5.2 m .]

12.12 A steel measuring tape measures correctly at 0 ◦C .
The length of a copper pipe is measured by the measuring
tape as 25 m at 0 ◦C . (a) What will the copper pipe’s mea-
surement be when both the measuring tape and the pipe are
heated up to 250 ◦C? (b) What is the real length of the pipe
at that temperature? [A: (a) 25.03 m , (b) 25.11 m .]

12.4 Ideal Gas

12.13 The molar mass of the hydrogen atom (H) is 1 g , the
molar mass of the oxygen atom (O) is 16 g and the molar
mass of the carbon atom (C) is 12 g . (a) How many moles
are there in 100 g of water (H2O )? (b) What is the weight in

grams of 5 moles of carbon dioxide (CO2 )?
[A: (a) 5.6 moles , (b) 220 g .]

12.14 A container with a volume of 20 liters has 160 g of
oxygen (O2 ) gas at 25 atm of pressure. (a) How many moles
of oxygen are there in the container? (b) What is the temper-
ature of the gas? [A: (a) 5 moles , (b) 1220 K .]

12.15 An oven with a volume of 1 m3 contains air at STP
conditions (0 ◦C and 1 atm ). (a) How many moles of air are
present in the oven? (b) How many moles of air are left in
the oven if it is heated up to a 200 ◦C temperature?

[A: (a) 45 moles , (b) 26 moles .

12.16 An oxygen tube used in industry contains oxygen gas
compressed at 100 atm and at 27 ◦C temperature in a vol-
ume of 200 liters . (a) What is the mass of the oxygen inside
of the tube? (b) It is observed that the pressure of the tube
decreases to 80 atm in the next week due to a leak in its valve.
How much oxygen remains in the tube? (Assume that the
temperature remains constant.) [A: (a) 14.6 kg , (b) 11 kg .]

12.17 The Loschmidt constant used in chemistry is de�ned as
the number of gas molecules under STP conditions in 1 cm3

volume. Calculate the Loschmidt constant. [A: 2.7 × 1019 .]

12.18 The cylinder of a gasoline engine with a volume of
3 lt contains air-gasoline mixture at a temperature of 27 ◦C
and a pressure of 1 atm . The piston is pushed to decrease
the volume of the mixture by a factor of 8 and increase the
pressure by a factor of 12 . What will the �nal temperature
of the mixture be? [A: 447 ◦C .]

12.19 A cylinder contains 10 liters of an ideal gas at a temper-
ature of 27 ◦C . The gas is subject to the following processes
each time after the same initial state:
(a) Its pressure is increased by a factor of 5 by heating under
constant volume. What will its �nal temperature be?
(b) Its volume is increased by a factor of 8 by heating under
constant pressure. What will its �nal temperature be?
(c) It is heated such that both its pressure and volume double.
What will its �nal temperature be?
(d) Its absolute temperature is increased by a factor of 4 by
heating under constant pressure. What will the �nal volume
be? [A: (a) 1500 K , (b) 2400 K , (c) 1200 K , (d) 40 liters .]

12.20 On a day when air pressure is 1 atm and the temper-
ature is 27◦ , an air bubble with a volume of 1 cm3 breaks
o� from the bottom of a lake with 25 m depth. What will its
volume be when it reaches the surface? (Hint: Calculate rates
with the P = P0 + ρgh formula that we found in Chapter 11
for the hydrostatic pressure in liquids.) [A: 3.5 cm3 .]
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THE LAWS OF

THERMODYNAMICS

The heat engine that started the
industrial revolution: The steam
train.
Steam expands and performs
work by pushing a piston. From
where does the steam draw the
energy to perform this work?
Is there an internal source that
can be used either as work or as
heat? (Photo: Christoph Ehlen).

In the previous chapter, we learned the basic concepts of thermodynamics.
Now, we are ready to discuss what a system can do and what changes it can
undergo with the heat that it receives. Thermodynamics is the science that
deals with systems that exchange heat and work with their environment. It is
a phenomenological (experimental) science; it makes no assumptions about the
structure of matter. It derives macroscopic results for the properties of matter
based on two general laws. It is a remarkable and complete classical theory.

The �rst law of thermodynamics makes a bilan of energy for both heat and
work exchanged between the system and its environment. But it does not indicate
the direction in which the system will develop. The second law of thermodynamics
establishes which processes, among those allowed by the �rst law, can really
occur.
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13.1 WORK DONE BY A GAS

We have previously discussed the fact that a system could exchange energy
with its surroundings in the form of heat. Another way to exchange energy is to
perform work.

Let us consider a gas inside of a cylinder. The top surface of this cylinder is a
movable piston, as seen in Figure 13.1. When we heat this gas, it will expand by
pushing the piston. It will thus perform work. Let us calculate the amount of this
work.

Let the gas inside of the cylinder have pressure P and volume V . The total
force exerted by the gas at this pressure on the piston with surface area A will
be F = P A . If the piston is displaced by dx as a result of this force, the small

Figure 13.1: The pressure of
the gas will push the piston with
a force of F = PA .

amount of work performed by the gas along this displacement will be

dW = F dx = PA dx = P dV

Here, dV=A dx is the increase in the volume of the gas. If the gas expands (dV>0 ),
the work it performs is positive; indeed, it expands by pushing the piston upwards.
However, if the piston is pushed downwards by an external force, the volume
decreases (dV<0 ), hence the work performed by the gas is negative. (Of course,
the work done by the external force is positive, but we are interested in the work
performed by the gas.)

If, during a �nite expansion, the volume of the gas goes from V1 to V2 , the
total work performed by the gas will be the limit sum of these small works, in
other words, its integral:

W =

∫ V2

V1

P dV (Work performed by a gas) (13.1)

The pressure P inside of the integral cannot be taken outside of the integral as it
is a function of both the volume V and the temperature T .

It will be instructive to examine the work performed by the gas on a P -V
diagram. As shown in Figure 13.2, recalling the de�nition of an integral, the area

Figure 13.2: In the P -V dia-
gram, the area under the curve
is the work W performed by the
gas.

of the region under the curve will be the work W .
The path taken by the gas when going from V1 to V2 during expansion is

important. The work will vary depending on the path. The work performed by
the gas can be calculated as follows for the processes indicated in Figure 13.3:

Figure 13.3: The work per-
formed by the gas (a) At con-
stant pressure, (b) At constant
temperature (isothermal), (c) At
constant volume.

(a) Work under constant pressure (Figure 13.3a) : It is su�cient to calculate
the area of the rectangle as the pressure P is constant along the path shown
in the �gure. Then, P can be taken outside of the integral in Eq. (13.1):

W = P
∫ V2

V1

dV = P (V2 − V1) (Work under constant pressure) (13.2)
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(b) Work at constant temperature (isothermal) (Figure 13.3b) : If we write
the ideal gas equation as P = nRT/V , the isothermal curves in the P -V
diagram will decrease as P ∼ 1/V . Let us use the integral to calculate the
work performed on such a curve. If we write the pressure P inside of the
integral as P = nRT/V , we get

W =

∫ V2

V1

P dV = nRT
∫ V2

V1

dV
V

The integral of this expression is the logarithm function:

W = nRT ln
V2

V1
(Work at constant temperature) (13.3)

(c) Work at constant volume (Figure 13.3c) : In this case the work is zero:
W=0 . At constant volume (dV=0 ), the area under a vertical line is zero.

Example 13.1

A container with 3 liters of volume contains a gas at 27 ◦C
temperature and 2 atm pressure. Starting each time from the
same initial state, calculate the work performed by this gas
during the following processes:
(a) Its temperature is increased by a factor of 5 at constant

volume.
(b) Its volume is increased by a factor of 4 at constant pressure.
(c) Its volume is increased by a factor of 2 at constant temper-

ature.

Answer
(a) The de�nition of work is dW=P dV . If the volume is
constant, then dV=0 and the work performed will be zero:
W=0 .
(b) Since the pressure is constant, integration is not needed:

W = P dV = P (V2 − V1)
The �nal volume is V2 = 4V1 = 4 × 3 = 12 L . Using the SI
units (pascal and cubic meters), we get

W = 2× 1.013× 105 × (12− 3)× 10−3 = 1800 J = 1.8 kJ
(c) We had found the isothermal work in Eq. (13.3):

W = nRT ln
V2

V1
Taking the �nal volume as V2=2V1 , we get ln 2V1/V1= ln 2 :

W = nRT ln 2
The number of moles n here could be calculated separately,
but this is not necessary, because we use the left-hand side
rather than the right-hand side of the ideal gas equation
PV = nRT :

W = P1V1 ln 2
We substitute ln 2 = 0.69 and the other values:

W = 2 × 1.013 × 105 × 3 × 10−3 × 0.69 = 420 J

Example 13.2

Calculate the work performed by the gas during all three pro-
cesses (abd, acd, ad ) shown in the P -V diagram above.

Answer
Path abd : We calculate in two steps:

Wabd = Wab + Wbd

Along the path ab , work will be zero, as the volume is con-
stant : Wab=0 . The other work is found using the formula
W=P(V2 − V1) as it is performed under constant pressure:

Wabd = 0 + Pb (Vd − Vb) = 2 × 105 × (8 − 5) = 600 kJ

Path acd : We again calculate in two steps and no work is
performed along the path taken at constant volume:

Wacd = Wac + Wcd = Pa (Vc − Va) + 0
Wacd = 6 × 105 × (8 − 5) = 1800 kJ

Path ad : We know the work is the area under the curve in the
P -V diagram. Accordingly, the work performed by Wad is
the area under the diagonal. So, we simply add the area of the
triangle to the work Wbd that we had calculated previously:

Wad = Wbd +
(Pa − Pb) (Vd − Vb)

2
Wad = 600 kJ + 1

2 × (6 − 2) × 105 (8 − 5) = 1200 kJ .
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Example 13.3

A gas expands from volume V1=1 m3 to volume V2=3 m3

along the parabola curve P = 3 V2 (Pa) shown in the �gure.
Calculate the work performed by the gas.

Answer
The work performed is found by integration if the pressure
varies:

W =

∫ 3

1
P dV

We substitute the equation of the curve as P=3V2 and inte-
grate:

W =

∫ 3

1
3V2 dV =

∣∣∣∣V3
∣∣∣∣3
1

.

W = 33 − 13 = 26 J .

13.2 INTERNAL ENERGY – FIRST LAW OF THERMODYNAMICS

Consider heating a gas in a container at constant volume. The gas will perform
no work, as the volume is constant: W=P dV=0 . So, where does the heat energy
that we give to the system go? This energy will, of course, be received by the
molecules of the gas. The kinetic energies of the molecules will increase as the
gas is heated. The total energy, and therefore, the temperature of the gas will
increase.

Let us consider another case: This time, let us insulate a container closed with
a piston such that the system cannot exchange heat with the environment. Then,
let us start to compress this gas. The gas will perform negative work, in other
words, it will receive work from the outside, because its volume is decreasing.
However, it cannot give it as heat outside, because the gas is insulated. Therefore,
where does this work go? Again, the work will be used to increase the energies
of the gas molecules. The gas molecules will thus move faster and their kinetic
energies will increase.

These two cases show that a gas can convert the heat or work that it receives
into an internal energy. This is de�ned as internal energy in thermodynamics:

The total energy of molecules (or atoms) constituting a gas in a stationary
reference frame is called internal energy, and it is indicated with E .

At this stage, we do not yet know how to calculate internal energy. The �rst
law tells us how to do it:

First Law of Thermodynamics

In any process, the di�erence between the heat Q received and
the work W performed by a system is independent of the pro-
cess and equal to the increase in its internal energy ∆E :

∆E = Q −W (13.4)
Figure 13.4: The First Law:
The di�erence between received
heat and work done equals the
increase in internal energy.

Let us emphasize the important points of the �rst law:
• The �rst law is a kind of energy bilan: It states that the di�erence between the

received heat and the work done is spent on increasing the internal energy.
• Note the di�erence between the signs of Q and W : The heat received by the

system and the work done by the system are accepted as positive. Therefore,
the energy increase is included as their di�erence.
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• Internal energy, like pressure P , temperature T or volume V , is a quantity
that characterizes a system; in other words, it is a state variable. But the
heat Q and work W are path-dependent, therefore it is wrong to say “the
heat of a system” or the “work inside of a system.” But it is correct to say the
“internal energy of a system.” Regardless of how it is obtained, this internal
energy is now independent of the path taken.

• Two special cases:
• If the system changes state without performing work (W = 0 ), then

according to the �rst law, we get

∆E = Q

In other words, all of the received heat goes into increasing the internal
energy.

• If the system performs work but does not receive heat, then Q = 0
and, according to the law, we get

∆E = −W

Hence, the system performs this work by drawing it from its internal energy.
• This is a law that applies not only to gases, but to all systems. All kinds of

tools, machinery, etc., operate by obeying this law. For example, claims about
Figure 13.5: The perpetual
motion machine suggested by
Robert Boyle. In this machine,
water will not �ow and circu-
late by itself, because the point
at which water exits the hose
should be below the surface of
the water in the container.

perpetual motion machines that operate without receiving any energy are
not taken seriously in science, as they violate the �rst law (Figure 13.5).

• However, the �rst law does not tell us the direction in which the change
occurs. For example, let us bring together two objects, one hot and the other
cold. One of these objects will give heat Q to the other, but which one? The
�rst law says nothing and allows for heat transfer in both directions, as long
as the heat received by one is Q and the other is −Q , in other words, as
long as the net heat is zero. However, we know that, in nature, the hot body
always gives heat to the cold one. It is the second law that that will tell us
the direction towards which the events will develop.

13.3 APPLICATIONS OF THE FIRST LAW

The �rst law determines the relation between heat, work and internal energy.
We can calculate many processes using this relation.
Internal Energy of an Ideal Gas

First, we must slightly change the de�nition of speci�c heat for gases. We
had de�ned speci�c heats as being per mass in section 12.2:

Q = mc ∆T

We can use the same de�nition in terms of the number of moles: Q = nc∆T . This
is more useful for gases, as we shall see later.

However, the temperature increase may take place under constant pressure
or constant volume, and therefore a separate speci�c heat is de�ned for each one
as follows:

Figure 13.6: 1→2 : Heating at
constant volume. 1→3 : heating
under constant pressure.

Q =

 ncv ∆T (Heating at constant volume)
ncp ∆T (Heating at constant pressure)

(13.5)
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Now let us consider that we increase the temperature of a gas by ∆T at constant
volume. The work performed during this process will be zero, because the volume
is constant. If we take W = 0 in the �rst law,

∆E = Q = ncv ∆T

Integrating this expression from T = 0 to T , we get

E − E0 = ncv (T − 0)

If we decide that the internal energy of the gas at absolute zero temperature
T = 0 is E0 = 0 , then we �nd the internal energy of a gas at temperature T as
follows:

E = ncv T (Internal energy of an ideal gas) (13.6)

The increase in the internal energy would still have been ncv∆T if we had per-
formed this heating under constant pressure. This is because internal energy is a
state variable and the value that it takes at that temperature is independent of
how it is reached.
The relation between cv and cp

Now, let us consider that we heat the same gas by ∆T under constant pressure.
It will both heat and perform work during this process. We can write the heat
directly:

Q = ncp ∆T

If the volume of the gas changes from V1 to V2 under constant pressure P , the
work can be written as follows:

W = P(V2 − V1)

Using the ideal gas equation PV = nRT here, we get

W = PV2 − PV1 = nR T2 − nR T1 = nR ∆T

Now, let us use these heat and work expressions in the �rst law:

∆E = Q −W

ncv ∆T = ncp ∆T − nR ∆T

Simplifying, we �nd the relation between the speci�c heats:

cp = cv + R (Speci�c heats of an ideal gas) (13.7)

This expression is used to �nd one of the speci�c heats if the other is known. We
will see how to �nd the speci�c heat cv . Here are the results without proof:

Speci�c heats of gases
cv cp

Monatomic gases
(He, Ne, Ar, Kr . . . )

3
2 R 5

2 R

Diatomic gases (H2,
O2, N2 . . . )

5
2 R 7

2 R

Speci�c heat expressions are more complex for polyatomic gases.
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Adiabatic Process
The process that a system undergoes without any heat exchange ( Q = 0 ) is

called an adiabatic process. In such a case, there is only exchange of work with
the environment. Let us consider the gas in a container (Figure 13.7). No heat
will be exchanged if the container is insulated and all changes of state will be
adiabatic. Likewise, let us compress the gas in a cylinder by suddenly compressing
the piston. The gas does not have time to exchange heat with the environment,
as it takes place in a short period of time.

We can use the �rst law to calculate the �nal temperature, pressure and
volume of an ideal gas at the end of an adiabatic process. Consider that the

Figure 13.7: No heat is ex-
changed in an adiabatic process:
Q = 0 .

temperature of a gas changes by a small amount dT during an adiabatic process.
If we take Q = 0 in the �rst law and write P dV for work and ncv dT for the
increase in internal energy, we get

∆E = 0 −W

ncv dT = −P dV

Let us take the pressure as P = nRT/V from the ideal gas equation:

ncv dT = −
nRT

V
dV

dT
T

+
R
cv

dV
V

= 0

In this expression, let us substitute R with the formula R = cp − cv that we found
above for speci�c heats:

dT
T

+

(
cp

cv
− 1

)
dV
V

= 0

If we de�ne the ratio of the speci�c heats as a dimensionless constant γ=cp/cv ,
we always get γ > 1 :

dT
T

+ (γ − 1)
dV
V

= 0

Taking the inde�nite integral of both sides of this expression, we get

ln T + (γ − 1) ln V = constant

Using the properties ln a + ln b = ln(a · b) and c ln d = ln d c of the logarithm,
the result is as follows:

T Vγ−1 = constant

If we wish to �nd the relation between the volumes, we substitute the temperature
in this formula as T = PV/nR from the ideal gas equation and simplify:

P Vγ = constant

It is meaningful to compare this relation between pressure and volume with
Figure 13.8: Comparison of adi-
abatic and isothermal curves.

isothermal curves on the P -V diagram. As seen in Figure 13.8, the adiabatic
curve decreases more rapidly compared to the isothermal curve.
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A similar formula can be found for (P,T ) if necessary. According to these
results, these products remain constant at each stage of the adiabatic process, in
particular, for the initial and �nal values:

P1Vγ
1 = P2Vγ

2

P1−γ
1 T γ

1 = P1−γ
2 T γ

2

T1 Vγ−1
1 = T2 Vγ−1

2

(Adiabatic process) (13.8)

It is su�cient only to keep the �rst of these formulas in mind; the others can be
obtained from the ideal gas equation PV = nRT .
Work in an adiabatic process. As Q=0 in an adiabatic process, we get ∆E=−W
from the �rst law. Using Eq. (13.6) for the internal energy, we get

∆E = ncv ∆T

W = −∆E = −ncv∆T (13.9)

The work performed by the gas is fully provided by the internal energy.

Example 13.4

A diatomic gas of 5 moles is heated by giving it 600 J under
constant pressure. (cv = 5R/2 , cp = 7R/2 .)
(a) What will the temperature increase ∆T be?
(b) What will the increase in internal energy be?
(c) How much work will the gas perform?

Answer
(a) It may seem that the information provided in this problem
is insu�cient, but it is actually su�cient for the requested
calculations. We use the formula for temperature increase

under constant pressure:
Q = ncp ∆T

We substitute the values and calculate ∆T as follows:

∆T =
Q

ncp
=

600
5 × 7

2 × 8.31
= 4.1 K

(b) The energy increase will be ∆E = ncv ∆T regardless of
the process being at constant pressure or volume:

∆E = n 5
2 R ∆T = 5 × 5

2 × 8.31 × 4.1 = 426 J
(c) The work is calculated from the �rst law when the heat
and the increase in internal energy are known:

∆E = Q −W → W = Q − ∆E = 600 − 426 = 174 J .

Example 13.5

A vessel contains 4 moles of a monatomic gas at 0 ◦C . From
the same initial state:
(a) The temperature of the gas is increased to 50 ◦C at con-

stant volume. Calculate the given heat, the work performed
by the gas and the increase in internal energy.

(b) The temperature of the gas is increased to 50 ◦C under
constant pressure. Calculate the given heat, the work per-
formed by the gas and the increase in internal energy.

Answer (a) The heat received by the gas at constant volume
is calculated using Eq. (13.5) and the cv= 3

2 R value in the
table:

Q = ncv ∆T = 4 × 3
2 × 8.31 × (50 − 0) = 2500 J .

Work is zero, because the volume is constant: W = 0 . Then
we �nd the increase in internal energy using the �rst law:

∆E = Q −W = Q − 0 = 2500 J .
(b) The heat taken under constant pressure is likewise calcu-
lated by taking cp = 5

2 R :
Q = ncp ∆T = 4 × 5

2 × 8.31 × (50 − 0) = 4200 J .
We do not have the information to calculate the work directly.
However, if we �rst calculate the increase in internal energy,
we can then �nd the work by using the �rst law. The increase
in internal energy is found using the formula (13.3):

∆E = n cv ∆T = 4 × 3
2 R × (50 − 0) = 2500 J

We calculate the work from the �rst law using Q and ∆E :
∆E = Q −W → W = Q − E = 4200 − 2500 = 1700 J .

Example 13.6

The volume of a 1 g of water at 100 ◦C in temperature and
under 1 atm of pressure expands to 1670 cm3 when converted

into steam at 100 ◦C in temperature. As the heat of vaporiza-
tion of water is L=540 cal/g , calculate the increase in internal
energy.
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Answer
In this problem, we will �rst calculate heat and work and
then �nd the increase in the internal energy using the �rst
law. Since no temperature change is involved, there is only
the latent heat of vaporization during the change of phase:

Q = m L = 1 × 540 = 540 cal = 540 × 4.18 = 2260 J
The 1 cm3 volume of 1 g of water expands when it is turned

into vapor. We calculate the work under 1 atm at constant
pressure:

W = P (V2 − V1) = 1.013 × 105 × (1670 − 1) × 10−6

W = 170 J
We �nd the increase in the internal energy using the values
of Q and W :

∆E = Q −W = 2260 − 170 = 2100 J .

Example 13.7

A gas completes a cycle through the 3-step process (a→ b→
c→ a ) shown in the �gure. What is the net heat received by
the gas?

Answer
This problem may seem complicated at �rst glance, but it
becomes simple when you think about it. When the gas starts
at point a and undergoes any process, it will have the same
internal energy after it returns to point a, in other words, the

increase in internal energy will be zero: ∆E = 0 . Accord-
ingly, the net heat received during a cycle will be spent on
the net work done by the gas:

∆E = Qabca −Wabca = 0 → Qabca = Wabca

We do not have su�cient information to directly calculate
the heat, but we can calculate the work from the P -V dia-
gram. The work performed at each step of the cycle is the
area under that curve. However, the work will be negative if
V decreases in the direction moved. Accordingly, the work
performed along the path a→b will be positive, the work
performed along the path b→c will be negative and the work
performed along the path c→a will be zero. As a result, the
net work will be equal to the area of the red triangle shown
in the �gure.

Qabca = Wabca = Area of the triangle ABC
Qabca = 1

2 × (4 − 1) × (150 − 50) × 103 = 150 000 J
Q = 150 kJ .

Example 13.8

A cylinder with 5 liters of volume contains a diatomic ideal gas
at 27 ◦C in temperature and 1 atm in pressure with γ = 1.4 .
The piston is suddenly pushed to compress the volume of the
gas to 1 L before it can exchange any heat.
(a) What will the �nal temperature and pressure be?
(b) How much work will the gas perform?

Answer
(a) This is an adiabatic process, because there is no heat ex-
change ( Q = 0 ). We �rst �nd the pressure using Eqs. (13.8):

P1 Vγ
1 = P2 Vγ

2
From here, we calculate the �nal pressure:

P2 =

(V1

V2

)γ
P1 =

(5
1

)1.4
× 1 = 9.5 atm

In order to �nd the �nal temperature, we write the ideal gas

equation twice and �nd their proportion:
P2V2

P1V1
=

T2

T1
→ T2 =

P2V2

P1V1
T1

T2 =
9.5 × 1
1 × 5

× 300 = 570 K

(b) Adiabatic work is equal to the decrease in the internal
energy (Eqs. 13.9):

W = −∆E = −ncv∆T = −ncv (T2 − T1)
Rather than calculating the number of moles n here, we �nd
the pressures and volumes using the formula nRT = PV :

W =
cv
R

(nRT1 − nRT2) =
cv
R

(P1V1 − P2V2)

The value cv = 5
2 R is taken from page 222 for diatomic gases:

W = 5
2 (P1V1 − P2V2)

From here, we calculate the work performed by the gas:
W = 5

2 × (1 × 5 − 9.5 × 1) × 1.013 × 105−3 = −1140 J .

13.4 KINETIC CALCULATION OF PRESSURE

What is the origin of the air pressure of a tire that can withstand the weight
of a car? The answer at the microscopic scale is that the collisions of those small
molecules with the rubber wall keep such a heavy car up.

There is a kinetic theory of gases that describes the thermodynamic properties
of a gas, such as temperature and pressure, in terms of the microscopic motions
of its atoms or molecules. Let is calculate the pressure of a gas according to the

Figure 13.9: The pressure in-
side the automobile tire is a
result of the collision of the
molecules with the rubber wall.

kinetic theory in order to show how calculations are made in this theory.
We will make some assumptions to keep the calculation simple:
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• Gas molecules will be assumed to be monatomic. Therefore, they will act as
point particles, and thus only perform translational motion and not rotation
or vibration.

• The collisions among the molecules will be ignored.
• The molecules will be assumed to make elastic collisions with the wall.

Let us remember the concepts of impulse and momentum in mechanics: The
momentum of an object with mass m subject to force F in the time interval ∆t
changes as follows:

~F∆t = m~v2 − m~v1

Now let us consider that a molecule with velocity ~v inside of a cubic volume of
side length L collides with a wall that is perpendicular to the x -axis (Figure 13.10).
As a result of the elastic collision, the component vy of the molecule parallel
to the wall does not change and the horizontal component vx gets re�ected
back. Therefore, the force on this molecule by the wall is only in the x -direction
(Figure 13.11):

Figure 13.10: Gas molecules in
a cubic volume.

F ∆t = m0vx − m0(−vx) = 2m0vx

We are using m0 here for the mass of a molecule to avoid any confusion.
This molecule, after colliding with the wall, rebounds toward the opposite

wall, subsequently returning and colliding once more. Therefore, the time ∆t
between two collisions is the time of one collision. As the length of one side is L ,
we calculate the time required to travel back and forth along the path 2L :

∆t =
2L
vx

Using ∆t from the equation above, we write the force F as follows:

F =
2m0vx

∆t
=

m0v
2
x

L

This is the force acting on the molecule. According to the action-reaction law,
Figure 13.11: The collision of a
molecule with a wall.

the molecule will push the wall with an equal and opposite force. We will ignore
the sign, because we are only concerned with the magnitude of the force here.

We have found the force exerted by one molecule on the wall. If there are N
molecules in the gas, the force exerted by each one of them on the wall will have
the same form. Therefore, the sum required to �nd the force of N molecules can
be written as follows:

Ftotal =
m0

L

(
v2

1x + v2
2x + · · · + v2

Nx

)
Let us examine the sum in the brackets separately: If we divide this sum by
the number of molecules we will �nd the mean (or, the average) 〈v2

x〉 of the v2
x

velocities:

〈v2
x〉 =

v2
1x + v2

2x + · · · + v2
Nx

N
In this expression, we want to see the mean of the velocity itself, rather than
the mean of the component 〈v2

x〉 . As each velocity vector can be written as
v2=v2

x + v2
y + v2

z , the mean of both sides will be

〈v2〉 = 〈v2
x〉 + 〈v

2
y〉 + 〈v

2
z 〉
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Ignoring the e�ect of gravity, the mean velocities of the molecules will be equal
in all three directions due to symmetry:

〈v2
x〉 = 〈v2

y〉 = 〈v2
z 〉

〈v2〉 = 3〈v2
x〉

We can now write the force above in terms of this mean velocity:

Ftotal =
Nm0

L
〈v2〉

3

From here, we can calculate the pressure: As the surface area of the side is A = L2

and the volume is V = L3 , the pressure is expressed as follows:

P =
Ftotal

A
=

Nm0

3L3 〈v
2〉 =

Nm0

3V
〈v2〉 (13.10)

Many important conclusions can be drawn from this expression:
• Internal energy and speci�c heat: Let us move the volume to the left-hand

side of this expression, and form the kinetic energy of one molecule:

PV = 2
3 N 1

2 m0〈v
2〉︸      ︷︷      ︸

E

The product of the mean kinetic energy of one molecule, m0〈v
2〉/2 , and the

number N is the total kinetic energy of the gas. At the start, we had assumed
that the molecules did not interact and only engaged in elastic collisions with
the wall. Therefore, according to the de�nition, the total kinetic energy will
be the internal energy E of this gas:

PV = 2
3 E

We write the left-hand side as PV = nRT from the ideal gas law:

nRT = 2
3 E

E = 3
2 nRT (Internal energy of a monatomic gas) (13.11)

We had previously found the expression for the internal energy in terms of
the speci�c heat cv , in Eq. (13.6):

E = ncv T

This result shows that the temperature is a measure of the total energy of
a body. We �nd the speci�c heat cv of an ideal gas at constant volume by
comparing the last two expressions:

cv = 3
2 R (Speci�c heat of a monatomic gas) (13.12)

We also know that cp=cv+R = 5
2 R . In conclusion, the heat received by, work

performed by and the internal energy increase of ideal gases in all kinds of
processes can thus be calculated using these formulas for E, cv, cp .



228 13. THE LAWS OF THERMODYNAMICS

• Root-mean-square speed: Let us return to the expression (13.10):

PV =
Nm0

3
〈v2〉

The Nm0 product on the right-hand side of the equation is the product of
the number of molecules with the mass of one molecule, in other words, the
total mass m of the gas. We can write this in terms of the number of moles n
and the molecular mass M , as m = nM . Using the ideal gas equation again
on the left-hand side, we get

nRT = 1
3 nM 〈v2〉

〈v2〉 =
3RT
M

We �nd the root-mean-square (rms) speed formula by taking the root of
this expression:

vrms =
√
〈v2〉 =

√
3RT
M

(Root-mean-square speed) (13.13)

This formula is also valid for polyatomic gas molecules. According to the formula,
the mean speed of gases with lower molecular mass (hydrogen, helium) will be
higher. Therefore, light gases are very scarce in the atmosphere, because they
have already escaped gravity.

Example 13.9

What will the root-mean-square speed of oxygen gas (O2) be
at the temperature at which the root-mean-square speed of
Helium gas (He) is 1500 m/s? Molar masses are MO2=32 g ,
MHe=4 g .

Answer
We write Eq. (13.13) for root-mean-square speed for both

gases and form their ratio:

vrms =

√
3RT
M

→
vrms,2

vrms,1
=

√
M1

M2

We �nd the speed by substituting the molar masses:

vrms,2 =

√
M1

M2
vrms,1 =

√
4

32
× 1500 = 530 m/s

Example 13.10

A vessel contains 2 moles of neon (Ne) gas, which has molar
mass 20 g , at 27 ◦C in temperature.
(a) What is the total kinetic energy of the gas molecules?
(b) What is the root-mean-square speed of one molecule?

Answer
(a) The gas is monatomic, in other words, it has no rotational
or vibrational energy; its internal energy consists only of the
total kinetic energy. We use the formula (13.11) to calculate

the internal energy:
E = 3

2 nRT = 3
2 × 2 × 8.31 × 300 = 7500 J

(b) We use Eq. (13.13) for the root-mean-square speed:

vrms =

√
3RT
M

We calculate by substituting the molar mass of neon and the
temperature:

vrms =

√
3 × 8.31 × 300

0.020
= 610 m/s .
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13.5 HEAT ENGINES

Converting energy into work is the basis of technology. Hydroelectric power
plants convert the potential energy of water, wind turbines convert the kinetic
energy of air, and gasoline motors convert combustion energy into work.

A heat engine is the general name for machines that convert some of the
heat that they receive into work. The steam engine, the internal combustion
engine and the diesel motor are heat engines.

Regardless of their details, every heat engine performs W work with the heat
QH that it receives from a hot source at temperature TH and gives the remaining
heat QC to a cold source at temperature TC (Figure 13.12).

Heat engines operate in cycles, in other words, they return to their initial
state after each process of receiving heat and performing work. For example,
a steam engine performs W amount of work with the heat QH of the steam
that it receives from the boiler and then releases the heat QC into the external

Figure 13.12: Heat engine dia-
gram.

atmosphere with the expanded steam. In the end, this cycle returns to the point
at which it starts.

If we write the �rst law for one cycle, the change in the internal energy of
the system is zero:

∆E = Q −W = (QH + QC) −W = 0

W = QH + QC

QC is actually a negative quantity here. If we write the absolute values of the
heats, we �nd that the work is always equal to the di�erence:

W = |QH | − |QC |

Efficiency
The e�ciency of a heat engine is the ratio of the net work performed to the

spent heat:

e =
W
QH

=
|QH | − |QC |

|QH |

e = 1 −
∣∣∣∣∣ QC

QH

∣∣∣∣∣ (E�ciency of a heat engine) (13.14)

E�ciency is a number within the range [0, 1] , for example, if e = 0.3 , then the
e�ciency is 30 %.

Now, let us review the operating principles and e�ciencies of some of the
most common heat engines.
Internal Combustion Engine – Otto Cycle

A cycle consists of four processes in an internal combustion engine, also
known as the gasoline engine or the four-stroke engine. Let us examine these pro-
cesses by following them on the adjacent P -V diagram 13.13 and on Figure 13.14
below:

A gasoline-air mixture is pumped into the cylinder through the left valve
being opened when the engine is at point a . Known as intake, this process is
not included in the cycle. This gasoline-air mixture is suddenly compressed after
point a along the path ab . Known as the compression stroke, this process is
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adiabatic, because the system has no time for heat exchange. When the fuel is
ignited at point b (ignition), the pressure of the system increases under constant
volume before �nding the opportunity to expand, as well as increasing its pressure
along the path bc under constant volume, the gas receiving the heat QH during
this process. As a result of this pressure increase, the gas expands adiabatically

Figure 13.13: Otto cycle.

to push the piston along the path cd (power stroke). At point d , the valve on
the right is opened and the burnt fuel-air mixture is discharged from the exhaust
along the path da (exhaust stroke). Once the point a is reached, the cycle starts
again with the intake stroke.

Figure 13.14: Four-stroke en-
gine. Each �gure corresponds to
a di�erent process in the P -V
diagram.

Let us calculate the e�ciency of this cycle, also known as the Otto cycle, which
consists of two adiabatic and two constant-volume processes. It is su�cient to
calculate heat along the paths bc and da , as there is no heat exchange in adiabatic
processes:

bc process at constant volume: QH = ncv (Tc − Tb)

da process at constant volume: QC = ncv (Ta − Td)

Observing from the diagram that Tc > Tb and Ta < Td , it can be understood
that the heat QH is positive and the heat QC is negative.

Using the de�nition of e�ciency,

e =
QH + QC

QH
=

(Tc − Tb) + (Ta − Td)
Tc − Tb

The four temperatures here can actually be reduced to a single parameter. Let us
use V to indicate the value Vb = Vc at which the gas is compressed at a maximum
in the Otto cycle. If we use rV to indicate the volumes Va = Vd at which the gas
expands, r is de�ned as the compression ratio of the motor. Now, if we use the
formulas (13.8) that we found earlier for the adiabatic processes ab and cd , we
get

The process ab: Ta (rV)γ−1 = Tb Vγ−1

The process cd: Td (rV)γ−1 = Tc Vγ−1

If we eliminate the common term Vγ−1 in these equations and substitute the
temperatures T , the formula simpli�es as follows:

e =
Td rγ−1 − Ta rγ−1 + Ta − Td

Td rγ−1 − Td rγ−1

e = 1 −
1

rγ−1 (E�ciency of the Otto cycle) (13.15)
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Here, γ = cp/cv and is approximately γ=1.4 for air. This result is surprising. In
the gasoline engine, regardless of the type of fuel or dimensions that you use,
the e�ciency depends only on the compression ratio r of the engine. Of course,
it is not possible to achieve high compression with certain fuels, as they burn
halfway through. Modern engines using high-octane gas have compression ratios

Figure 13.15: The Jaguar V12
engine has a record compression
ratio of r=14 .

around r = 10 . If we take r = 10 and γ = 1.4 for air, the e�ciency is found to
be e = 0.6 . In reality, the e�ciency of a gasoline engine is around 25 %, due to
friction and other e�ects until the energy is transmitted to the wheels.

Example 13.11

Determine the signs of heat (Q ), work (W ) and internal en-
ergy increase (∆E ) in each step of the ABC cycle shown in the
�gure, and complete the table.

Answer
This problem constitutes the basis before examining cycles.
First, let us remember some of the general principles:
• In the P -V diagram, temperature increases with distance
to the origin.
• Internal energy always increases with T : ∆E=ncv ∆T .
• Heat is positive if the temperature increases. It can be in
either of two forms: Q=ncv ∆T or ncp ∆T
• The work dW=P dV by the gas is positive if it expands.

Now, let us analyze each step along these principles:

The AB process:
Temperature T and volume V increase along the path.

Therefore, Q and ∆E and W are all positive.

The BC process:
Temperature T increases, but volume V remains con-

stant along the path. Therefore, Q and ∆E are positive but
W = 0 .

The CA process:
Temperature T and volume V decrease along the path.

Therefore, Q and ∆E and W are all negative. As a result,
the table is completed as follows:

Example 13.12

A gas with γ=cp/cv=1.4 undergoes a 3-step cycle, as shown in
the �gure. It expands adiabatically along the path ab , is com-
pressed under constant pressure along the path bc and is heated
at constant volume along the path ca . Ta=500 K , Tb=400 K
and Tc=300 K . Calculate the e�ciency of the cycle.

Answer
Calculating the e�ciency of a cycle may seem complicated
at �rst glance, but it becomes easy when given some thought.
E�ciency was de�ned in Eq. (13.14) as the ratio of the net
work W to the positive heat:

ε =
W
QH

= 1 −
|QC |

|QH |

Therefore, we will calculate the steps of the cycle at which
the gas receives heat and the steps at which it gives heat, and
use their ratio in the e�ciency formula. In general, the result
will depend only on temperature di�erences.

In this problem, no heat exchange will take place in step
ab , as it is adiabatic. When the gas is compressed in step
bc , it is forced to give o� heat in order to keep the pressure
constant. Therefore, QC=Qbc . In step ca , its pressure is in-
creased by heating at constant volume. Therefore, QH=Qca .
In short, the situation is as shown in the �gure below:

Now let us calculate the heats QH and QC :
QH = Qca = ncv ∆T = ncv (Ta − Tc)
QC = Qbc = ncp ∆T = ncp (Tc − Tb)
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The ratio of these heats is used in the e�ciency formula:

ε = 1 −
|ncp(Tc − Tb)|
ncv(Ta − Tc)

= 1 − γ
Tb − Tc

Ta − Tc

We calculate the e�ciency by substituting the data:

ε = 1 − 1.4 ×
400 − 300
500 − 300

= 0.30 = 30 %

Example 13.13

Diesel cycle. In a diesel engine, air compressed at high temper-
ature is combusted by injected oil. The exploded air-oil mixture
expands and pushes the piston. The stages of the cycle are as
follows:

ab : adiabatic compression
bc : expansion under constant pressure (explosion)
cd : adiabatic expansion (work by pushing the gas piston)
da : cooling at constant volume (discharge from the exhaust)

Calculate the e�ciency of the Diesel cycle shown in the �gure
in which Ta=300 K , Tb=1000 K , Tc=1600 K and Td=800 K .
(γ=cp/cv=1.4 for air.)

Answer
It is easy to see where the heats QH and QC are received
and given in this cycle. No heat is exchanged in the adiabatic
steps. The gas receives heat along the path bc because it is
heated, and gets cooler and gives o� heat along the path da .
Therefore, we get QH = Qbc and QC = Qda . Let us calculate
these:

Under constant pressure : QH = Qbc = ncp (Tc − Tb)
Under constant volume : QC = Qda = ncv (Ta − Td)

The ratio of these heats is used in the e�ciency formula:

ε = 1 −
|ncv(Ta − Td)|
ncp(Tc − Tb)

= 1 −
1
γ

Td − Ta

Tc − Tb

We calculate the e�ciency by substituting the data:

ε = 1 −
1

1.4
×

800 − 300
1600 − 1000

= 0.40 = 40 %

13.6 SECOND LAW OF THERMODYNAMICS – THE CARNOT CYCLE

When two bodies, one hot and the other cold, are brought together, heat �ows
from the hot body to the cold one, and never the other way around. A drop of
ink dropped in water spreads out, but an ink that has been spread out does not
spontaneously gather at one point. Likewise, if we remove the wall between two
di�erent types of gas in two adjacent containers, the two gases get mixed, but
they do not separate spontaneously.

Although all of these processes are possible in terms of energy, in other words,
although they comply with the �rst law, they are not observed in nature. There
is a direction of development preferred by nature in thermodynamic events. The
second law of thermodynamics speci�es this direction.

There are many varied expressions of the second law in macroscopic and
microscopic scales. Its microscopic expression includes concepts such as entropy,
disorder, phase space, etc., and is the subject of the branch of physics called
Statistical Mechanics. We shall examine the macroscopic expression based on
heat engines here.

Second Law of Thermodynamics

It is not possible for a cyclic heat engine to convert all of the heat
that it receives from a reservoir into work.

Let us emphasize the important points of the second law:
• If a machine had converted all of the energy it received into work, according

to the de�nition of e�ciency (Eq. 13.14), we would have QC=0 and e�ciency
would be 100 %. This is possible according to the �rst law, because the heat
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received is equal to the performed work. However, the second law states that
no heat engine can operate at 100 % e�ciency. In other words, it speci�es
the direction towards which natural events develop.

• According to the second law, a gasoline engine cannot operate without dis-
charging the burnt gas, or a steam engine without discharging the expanded
steam. If it could not discharge this heat into the environment, the machine
would eventually heat up and become inoperable.

• If there is no way to give heat to the cold source, then work cannot be done
either. For example, the engine of a ship could, in principle, be able to take
heat from the sea water and turn some of it into work. However, the machine
would not operate, because it would not be able to return the remaining heat
to the sea after the work is done.

The Carnot Cycle
The second law states that it is impossible to build a 100 % e�cient heat

engine. So, what is the most e�cient engine that can be built and what is its
e�ciency? Scientists and engineers have pursued ways to increase the e�ciency
of the heat engines ever since the invention of the steam engine. Eventually, a
French engineer named Sadi Carnot (1796-1832) demonstrated what it takes to
make the most e�cient heat engine. Carnot proved that it is not possible to build
a heat engine more e�cient than the Carnot cycle, which is named after him.
The Carnot cycle is an ideal cycle, in other words, it has no application in real
life.

The Carnot cycle consists of two adiabatic and two isothermal processes. As
seen in Figure 13.16, starting from point a at the high temperature TH , expansion
at constant temperature (isothermal) takes place along the path ab, after which
cooling takes place through adiabatic expansion until the temperature TC is
reached along the path bc, and then isothermal compression takes place along the
path cd, until, �nally, the cycle is completed with adiabatic compression along
the path da.

Figure 13.16: The Carnot cycle.In order to calculate the e�ciency of the Carnot cycle, let us examine where
heat is received and where it is given o�. As Q = 0 in adiabatic processes, heat
exchange occurs only during the isothermal processes. The gas receives heat
during the ab process, because it expands, and it gives o� heat to the environment
during the cd process. Therefore, the heat received from the hot source along the
path ab will be equal to QH and the heat given o� to the cold source along the
path cd will be QC .

As ∆T = 0 in isothermal processes, we get ∆E=0 . Therefore, according to
the �rst law ∆E=Q−W , we get Q=W in isothermal processes. We can therefore
directly calculate work using Eq. (13.3), rather than the heat:

The isothermal process ab: QH = Wab = nRTH ln
Vb

Va

The isothermal process cd: QC = Wcd = nRTC ln
Vd

Vc

We use these values in the de�nition of e�ciency. Since Vd < Vc in the last
expression, the heat Qc will be negative. We make the logarithm positive as
ln(Vd/Vc) = − ln(Vc/Vd) :

e = 1 −
|QC |

|QH |
= 1 −

TC ln(Vc/Vd)
TH ln(Vb/Va)
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Now let us use the formula TVγ−1 = constant for the paths bc and da :

THVγ−1
b = TCVγ−1

c

THVγ−1
a = TCVγ−1

d

Dividing both sides of these two equations, we get

Vγ−1
b

Vγ−1
a

=
Vγ−1

c

Vγ−1
d

−→
Vb

Va
=

Vc

Vd

The �nal expression for e�ciency is:

e = 1 −
TC

TH
(E�ciency of the Carnot Cycle) (13.16)

It is remarkable that e�ciency depends only on the ratio of temperatures of the
hot and cold sources. In the Carnot cycle, the smaller the ratio TC/TH gets, in
other words, the higher the temperature di�erence gets, the higher the e�ciency
will be. Carnot proved that no other cycle can have a higher e�ciency.

Multiple-choice Questions

1. Which is the �rst law of thermodynamics?
(a) ∆E = Q + W
(b) ∆E = Q −W
(c) ∆W = E − Q
(d) ∆Q = E −W

2. Which is correct for the second law of thermodynamics?
(a) Received heat can be fully converted into work.
(b) The di�erence between received heat and given heat
is converted into work.
(c) The sum of received heat and given heat is converted
into work.
(d) It is not possible to fully convert received heat into

work.

3. Which is correct for the adiabatic process?
(a) Gas performs no work.
(b) Gas exchanges no heat.
(c) Internal energy does not increase.
(d) Internal energy does not change.

4. Which is correct for the isothermal process?
(a) The volume remains constant.
(b) The pressure remains constant.
(c) The temperature remains constant.
(d) Gas exchanges no heat.

5. Which of the following is the formula for the work per-
formed by a gas?
(a) P dV (b) V dP (c) V/dP (d) dP/V

6. Which of the following is the e�ciency of a heat engine?
(a) Ratio of the work performed to the heat received by
the gas.
(b) Ratio of the work performed to the heat given by
the gas.
(c) Ratio of the work done to the total heat.
(d) Ratio of the work performed to the internal energy.

7. Which of the following is correct?
(a) A gas performs work if it is heating.
(b) A gas performs work if it is cooling.
(c) A gas performs work if it is expanding.
(d) A gas performs work if its pressure is increasing.

8. The volume of a gas is increased by 2 m3 at a constant
pressure of 10 Pa . How much work will the gas per-
form?

(a) 5 J (b) 1/5 J (c) 12 J (d) 20 J

9. A gas with 3 m3 in volume and 2 atm in pressure is
heated at constant volume to increase its pressure to
10 atm . How much work will the gas perform?

(a) 0 (b) 18 J (c) 12 J (d) 30 J

10. A gas receives 50 J of heat and performs 30 J of work.
What is the change in internal energy?

(a) -20 J (b) 20 J (c) 80 J (d) -80 J
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11. The internal energy of an ideal gas changes with which
of the following?

(a) Temperature.
(b) Volume.
(c) Pressure.
(d) All of the above.

12. What is the relation between cv , the speci�c heat at
constant volume, and cp , the speci�c heat at constant
pressure of an ideal gas?
(a) cp=cv (b) cp=2cv (c) cp=cv+R (d) cv=cp+R

13. What is the origin of the pressure of a gas at the micro-
scopic scale?

(a) Collisions of atoms with container walls.
(b) Collisions between atoms.
(c) The gravitational force on atoms.
(d) The kinetic energy of atoms.

14. The root-mean-square speed of the molecules of a gas is
independent of which of the following?

(a) Temperature
(b) Molar mass
(c) The gas constant R
(d) Pressure

15. The e�ciency of the gasoline engine is dependent on
which of the following?

(a) Temperature di�erence
(b) Pressure di�erence
(c) Compression ratio
(d) Amount of the air-gasoline mixture

16. Which of the following are correct?
I. It is not possible to build a heat engine with 100 %
e�ciency.

II. There can be no heat engine more e�cient than the
Carnot cycle.
III. The Carnot cycle has 100 % e�ciency.
IV. The Carnot cycle is used in industry. .

(a) I & II (b) I & III (c) II & IV (d) I & IV

17. The molecules of which of the three gases, hydrogen
(H2) , oxygen (O2) and carbon dioxide (CO2) at the
same temperature have higher root-mean-square speed?

(a) H2 (b) O2 (c) CO2 (d) Equal

18. A gas is compressed at constant temperature. Which is
correct?

(a) It will receive heat.
(b) It will give o� heat.
(c) Its internal energy will increase.
(d) Its internal energy will decrease.

19. In which process is it necessary to give higher heat to
increase the temperature of a gas by the same amount?

(a) At constant volume.
(b) At constant pressure.
(c) Adiabatic.
(d) Isothermal.

20. When a gas expands adiabatically, what is the source of
the work that it performs?

(a) The heat it receives.
(b) The heat it gives.
(c) The increase in internal energy
(d) The decrease in internal energy.

Problems

13.1 Work Done by a Gas

13.1 A cylinder with 20 liters of volume contains 3 moles of
gas at a temperature of 27 ◦C . Calculate the work performed
by this gas during the following consecutive processes: (a) Its
temperature is increased by a factor of 4 at constant pressure.
(b) Later, its pressure is increased by a factor of 4 at constant
volume. (c) Later, its pressure is increased by a factor of 2 at
constant temperature. [A: (a) 220 J , (b) 0, (c) −51 J .]

13.2 A cylinder contains 5 moles of gas at a temperature of
27 ◦C . 2000 J of work is externally performed on this gas
under constant pressure. What will the �nal temperature of
the gas be? [A: 348 K .]

Problem 13.3

13.3 Calculate the work performed by the gas during all
three processes (abd, acd, ad ) shown in the P -V diagram
above.

[A: Wabd = 2800 kJ , Wacd = 800 kJ , Wad = 1800 kJ .]
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Problem 13.4

13.4 A gas expands from volume V1=1 m3 to volume
V2=2 m3 along the curve P=4 V3−3 (Pa) shown in the �gure
above. Calculate the work performed by the gas. [A: 12 J .]

13.2-3-4 Internal Energy - First Law of Thermo-
dynamics and Applications

13.5 As a gas is heated by being given 3000 J of energy, it
simultaneously performs 500 J of work. What is the change
in the internal energy of the gas? [A: ∆E = +2500 J ]

13.6 A monatomic gas of 4 moles is heated by giving it 800 J
under constant pressure. (cv=3R/2 , cp=5R/2 .) (a) What will
the temperature increase ∆T be? (b) What will the increase in
internal energy be? (c) How much work will the gas perform?

[A: (a) 9.6 K , (b) 480 J , (c) 320 J .]

13.7 A vessel contains 3 moles of a diatomic gas at a tem-
perature of 27 ◦C (cv=5R/2 , cp=7R/2 ). (a) The temperature
of the gas is increased to 127 ◦C at constant volume. Calcu-
late the given heat, the work performed by the gas and the
increase in internal energy. (b) The temperature of the gas
is increased to the same 127 ◦C at constant pressure. Calcu-
late the given heat, the work performed by the gas and the
increase in internal energy.

[A: (a) Q = ∆E = 6.2 kJ , W = 0 ,
(b) Q = 8.7 kJ , ∆E = 6.2 kJ , W = 2.5 kJ .]

Problem 13.8

13.8 A vessel contains Va=10 L of ideal gas at pressure
Pa=5 atm . This gas is �rst cooled at constant volume along
the path ab shown in the �gure above until its pressure
reaches Pb=2 atm . Then, it is again brought to temperature
Ta by expansion under constant pressure. (a) What is the
volume Vc ? (b) What is the total work performed by the gas?
(c) What is the total increase in internal energy? (d) How
much heat does the gas give or receive?

[A: (a) 25 L , (b) W = 3000 J , (c) ∆E = 0 , (d) it receives
Q = 3000 J .]

Problem 13.9
13.9 We had previously seen that 1 mole of monatomic ideal
gas at STP conditions (0 ◦C and 1 atm ) has a volume of 22.4 L
(point a in the �gure above). The volume of this gas is in-
creased by a factor of 5 in two di�erent ways: The process ab
is isothermal (T=constant ) and the process ac is adiabatic
(∆Q=0 ). Calculate and compare the work performed by the
gas in both cases. (cv=3R/2, γ=1.4 .)
[A: Isothermal 3700 J , adiabatic 1600 J , isothermal work is
always greater.]

13.10 A cylinder contains 3 moles of diatomic gas at a tem-
perature of 27 ◦C (cv=5R/2 ). 1000 J of work is externally
performed on this gas under constant pressure. (a) What will
the �nal temperature of the gas be? (b) What will the internal
energy be? (c) How much heat has the gas received or given
o�? (Notice that the work is negative.)
[A: (a) 260 K , (b) ∆E = −2500 J , (c) Q = −3500 J has been

given o�.]

Problem 13.11
13.11 A gas completes a cycle through the 3-step process
(a→b→c→a ) shown in the �gure. What is the net heat re-
ceived by the gas? [A: 300 kJ .]

13.12 A cylinder with 4 liters of volume contains a
monatomic ideal gas at 27 ◦C in temperature and 3 atm in
pressure (γ = 1.67 ). The piston is suddenly pushed to com-
press the volume of the gas to 1 L before it can exchange any
heat. (a) What will the �nal temperature and pressure of the
gas be? (b) How much work will the gas perform?

[A: (a) 750 K , 30 atm , (b) −2.7 kJ .]

13.4 Kinetic Calculation of Pressure

13.13 The molecules of an oxygen gas in a cylinder collide
3×1023 times in 1 s with the surface of a piston with a cross-
section area of 100 cm2 . If the root-mean-square speed of
molecules is 500 m/s , (a) What is the force exerted by each
molecule on the piston in 1 s? (b) How much pressure does
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the gas exert on the piston? (The mass of the oxygen molecule
is 5.3 × 10−26 kg .) [A: (a) 5.3 × 10−23 N , (b) 1600 Pa .)

13.14 What are the root-mean-square speeds of oxygen gas
(O2) , which has molar a mass 32 g , and of nitrogen gas (N2) ,
which has a molar mass 28 g , at the temperature at which
the root-mean-square speed of argon gas (Ar) , which has a
molar mass 40 g , is 200 m/s? [A: 224 and 239 m/s .]

13.15 A container with 5 L of volume contains 3 moles of he-
lium gas (He) at 127 ◦C in temperature ( MH=4 g ). (a) What
is the total kinetic energy of the gas molecules? (b) What is
the root-mean-square speed of molecules?

[A: (a) 15 kJ , (b) 1580 m/s .]

13.5 Heat Engines
13.16 (a) A heat engine receives 5000 J in heat from a hot
source and releases 2000 J in heat to the environment. What
is the e�ciency of the machine? (b) A heat engine oper-
ating with 20% e�ciency performs 300 J of work in one
cycle. How much heat does this machine release into the
environment? [A: (a) 60 % , (b) 1200 J .)

13.17 What is the minimum value of the compression ratio
r such that a gasoline engine operating with the Otto cycle
can have 50 % e�ciency? [A: r = 5.7 .]

Problem 13.18
13.18 Determine the sign of heat ( Q ), work (W ) and internal
energy increase (∆E ) in each step of the cycle ABC shown

on the left in the �gure above and mark them in the table on
the right.

Problem 13.19

13.19 A gas with γ=cp/cv=1.67 undergoes a 3-step cycle
as shown in the �gure above. It is compressed adiabatically
along the path ab , then expanded at constant pressure along
the path bc , and �nally cooled at constant volume along the
path ca . Ta=300 K , Tb=400 K and Tc=600 K . Calculate the
e�ciency of the cycle. [A: 10 % .]

Problem 13.20

13.20 Diesel cycle. Calculate the e�ciency of the Diesel
cycle shown in the �gure in which Ta=300 K , Tb=900 K ,
Tc=1400 K and Td=700 K . (γ=cp/cv=1.4 for air)

[A: 43 % .]



14
THE ELECTRIC FIELD

Lightning is the most striking
manifestation of electricity in
nature. Negatively charged elec-
trons accumulated in clouds sud-
denly �ow to the Earth’s surface
and transfer large amounts of
energy.

Gravitation was the �rst force to be discovered among the fundamental forces
of nature. Electricity and magnetism only came to be understood later, around
the 1600s. But electric and magnetic forces shape natural events and play a major
role, perhaps the most signi�cant role for living things and for technology. The
nervous system in the human body operates with electric currents and the oxygen
exchange in blood takes place with electric potential di�erences. Light bulbs,
radios, televisions and other appliances facilitate domestic life; electric motors
and electronic components in technology are included in the structure of all kinds
of instruments and machinery.

Gravitational force may hold our solar system and much larger galaxies
together. But it is the electric force that keeps atoms and molecules together to
form living bodies and organisms. With this new force, a new property of matter,
called the electric charge, arises in two forms, positive and negative.

Then, moving charges produce another fundamental force, calledmagnetism.
The sciences of electricity and magnetism �rst developed independently, and
were later united into a single theory, called electromagnetism. We will �rst
discuss the basic concepts and laws of electricity in this chapter and then those
of magnetism in subsequent chapters.
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14.1 ELECTRIC CHARGE

The existence of electric forces has been observed since ancient times. Fos-
silized pieces of pine resin, known as amber, could attract small objects. The word
“electric” was derived from the word electron, which means amber in Greek. It
was later observed that other materials made of glass, rubber, plastic or fur could
gain the same property through friction.

Figure 14.1: Amber is fossilized
tree resin.

You may perform such experiments at home too. Take a plastic comb or pen,
rub it with a piece of cloth and then hold it close to small pieces of paper. You
will observe that the comb attracts the small pieces.

However, if you rub a second plastic comb the same way and bring it close
to the �rst one, you will observe that they repel each other. (You may have to
suspend the comb with a rope to observe this e�ect.) Likewise, if you apply
friction to a glass rod and bring it close to the pen, you will observe that, this time,
they attract each other. This attractive-repulsive property proves that electric
force has a di�erent structure than gravity, because gravitational force can only
be attractive.

Figure 14.2: A comb rubbed
with a piece of cloth attracts
small pieces of paper.

Each force in nature shows its e�ect through an intrinsic quantity in matter.
After gravitational force was observed, it was understood that it acted on a
property of matter called mass. Likewise, electric forces should also arise from
another quantity inherent in matter, this one called the electric charge. Let us
emphasize the properties that this electric charge should have:

Figure 14.3: Two di�erent types
of electric charge.

• There are two types of electric charge with opposite signs. Only in
this way can one accommodate the attractive and repulsive forces that arise
in electricity. These were called positive and negative charges. Among the
elementary particles that were discovered later, protons (p+) were assumed
to be positively charged and electrons (e−) to be negatively charged. We must
emphasize that this is only an assumption. Today, scientists consider that this
assumption was unfortunate, and that it would have been more practical to
assume electrons as positive. Indeed, in the majority of electrical phenomena,
it is usually electrons that move in matter and positively charged protons
and ions that are stationary, as they are heavier. As we shall discuss later,
the electric current is actually a �ow of electrons in the inverse direction.

• Electric charge is conserved. In other words, the algebraic sum of the
electric charges in an isolated system is constant. For example, if -3 units of
charge are added to an object with +5 units of charge, the object’s net charge
will be +2 units. Objects accepted as neutral actually have both positive and
negative charges and seem neutral because they are in equal amount. If some
negative charge is taken away from such a neutral object, the object will be
positively charged.

Figure 14.4: Electron-positron
pair production at Lawrence
Berkeley National Lab.

In modern physics, charge conservation is not only algebraic, but also valid
on a much more fundamental scale. Electron-positron pairs (e− e+ ) can be
produced in vacuum in experiments conducted with elementary particles
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(Figure 14.4). As the charge of the positron is equal and opposite to the
electron, the net charge remains zero and charge conservation is respected.

• Electric charge of objects is always a multiple of an elementary
charge. It was observed that electric charge does not change continuously,
but varies as multiples of a minimum charge. In the terminology of modern
physics, it is said that electric charge is quantized. This elementary charge
is indicated with e . The electron charge (−e) and the proton charge (+e)
are exactly equal and opposite.
In today’s modern physics, this is actually not exactly correct. Particles called
quarks, considered to be the building blocks of elementary particles, are
thought to be charged as e/3 or 2e/3 , in other words, as fractions of the

Figure 14.5: According to mod-
ern physics, a proton consists of
3 quarks with fractional charges.

electron charge. However, these quarks have not yet been observed directly.

• Unit of electric charge. In the SI system, the unit of electric charge is the
Coulomb (C). The value of the elementary charge e is as follows:

1 e = 1.6 × 10−19 C (elementary charge) (14.1)

A Coulomb is a very large unit, and fractions are used in practice:

1 mC (milli Coulomb) = 10−3 C

1 µC (micro Coulomb) = 10−6 C

• You should also know that the fundamental electrical unit in the SI system is
not the Coulomb. Instead, the ampere (A), the unit of current, is chosen as
the fundamental unit. The reason for this is that, in practice, it is easier to
measure current than charge. We shall de�ne the ampere in Chapter 20.

Conductors and Insulators – Structure of the Atom
Let us take an object charged through friction and place it next to a neutral

object. When we connect these two objects with a copper rod, we observe that
some of the electric charge is transferred to the neutral object. However, when
we connect these two objects with a plastic rod, we observe that no charge is
transferred and the neutral object remains neutral.

Figure 14.6: Example of a con-
ductor and an insulator: The cop-
per rod conducts the charge and
the plastic does not.

This experiment shows that metals such as copper and iron easily conduct
electricity and substances such as glass do not conduct electricity at all. All
materials show either conductor or insulator properties in terms of electrical
conductivity. All metals are conductors. On the other hands, insulators may
become conductors under very high charge accumulations.

Other than these, there are semiconductor materials developed in labo-
ratories and used in electronic devices. Also, many elements can switch to a
superconductor state at very low temperatures. These two types of materials
cannot be explained with classical electromagnetism and must be analyzed with
modern quantum theory.

The reason why a material is a good or bad conductor can be understood by
examining the structure of the atom. As explained by modern quantum theory, the
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structure of all elements consists of a positively charged nucleus with electrons
rotating around it in orbits (Figure 14.7). The nucleus contains positively charged
protons (p+) and neutral neutrons (n) .

Figure 14.7: Atomic structure.

In a sense, this resembles the Sun and the planets rotating around it, however,
this resemblance is not exactly correct. Electrons can rotate only at certain radii
and the number of electrons that can inhabit each orbit is limited. For example,
the innermost orbit can only hold a maximum of two electrons, while the next
one can hold 8 electrons, etc.

When these orbits become �lled with the maximum number of electrons that
they can hold, they are called closed shells, and the next electron is forced to
go to next outer orbit. The electrons in the innermost orbits are very strongly
bonded to the nucleus, while the outer electrons are weakly bonded.

The electrons of an atom can be separated by externally bombarding it with
particles. Observations show that it is more di�cult to detach the electrons in
closed orbits and inner orbits, as they are more strongly bonded to the nucleus.
However, electrons in an outermost and incomplete orbit can be detached much
more easily.

Figure 14.8: The single elec-
tron outside closed orbits in cop-
per atom, makes it a conductor.

When atoms gather to form a rigid body, the state of these weakly-bonded
electrons in the outermost orbit determines the electrical conductivity of that
matter. The one and two electrons in the outermost orbit of metals get released
easily without any bombardment and circulate freely in the solid medium. In
insulators, they are �rmly bonded to the atoms, as the outermost orbits are
closed-shell orbits.

The source of electrical conductivity is these free electrons. Metals are
conductive because free electrons can easily move in a solid medium. Insulators
do not transfer charge because they have no free electrons.

14.2 COULOMB’S LAW

French scientist Charles Coulomb (1736–1806) was the �rst to examine the
nature of the force between electric charges. He had to invent new ways to
measure such forces. After charging a metal sphere, he put it in contact with an
identical second metal sphere and assumed that the charge was distributed evenly
among two spheres. He thus obtained half, quarter and one eighth charged, etc.,
spheres. He used a torsion balance to measure the very small forces among these
spheres.

And he established the law bearing his name:
Figure 14.9: The torsion bal-
ance used by Coulomb. Coulomb’s Law

The force of attraction or repulsion between two electric charges
is directly proportional to the product of the two charges and
inversely proportional to the square of the distance between
them:

F = k
q1 q2

r2 (14.2)

Like charges repel, unlike charges attract each other.

Let us emphasize the important points of Coulomb’s law:
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• Coulomb’s law is valid for stationary charges. It is therefore also known as
the electrostatic force.

Figure 14.10: Coulomb’s law.
Unlike charges attract, like
charges repel.

• The proportionality constant indicated with k in Coulomb’s law is called the
Coulomb’s constant:

k = 8.99 × 109 ≈ 9 × 109 N·m2/C2 (14.3)

The approximate value will be used in the problems.

• Later we shall see that it is more convenient to de�ne a new constant ε0
instead of k in some of the expressions we will be developing:

k =
1

4π ε0
↔ ε0 =

1
4π k

= 8.85 × 10−12 C2/(N·m2) (14.4)

The constant ε0 is called the electric permittivity of free space.
Coulomb Force for a System of Charges

If there are more than two charges in an environment, the net force on any
charge is the vector sum of the forces that the other charges exert upon it. For
example, consider four charges as q1, q2, q3 and q4 . The net force exerted upon
one of these, for example, upon q1 , is written as follows:

Figure 14.11: System of
charges.~F1 = ~F12 + ~F13 + ~F14 (14.5)

We take the vector sum of the forces Fi j after �nding their magnitudes using the
Coulomb’s law.

Example 14.1

Calculate the total force exerted upon the charge q3 = 2 µC by
the charges q1 = 4 µC and q2 = −3 µC shown in the �gure.

Answer
Charges with the same sign repel and charges with opposite
signs attract each other. Accordingly, the directions of the
force F1 exerted by the charge q1 and the force F2 exerted
by the charge q2 are shown on the right-hand side of the
�gure.

We calculate the magnitudes of both forces with the
Coulomb’s law. The signs of the charges are ignored when
calculating the magnitudes:

F1 = k
q1q3

r2
1

= 9 × 109 ×
(4 × 10−6) × (2 × 10−6)

(0.01 + 0.04)2

F1 = 29 N

F2 = k
q2q3

r2
2

= 9 × 109 ×
(3 × 10−6) × (2 × 10−6)

0.042

F2 = 34 N
We �nd the total force by taking the positive x -direction
towards the right:

F = F1 − F2 = 29 − 34 = −5 N .

Example 14.2

For the charges q1= − 3 µC and q2= + 2 µC in the �gure,
(a) Calculate the components of the total force acting on the

charge q3 = +4 µC .
(b) Find the magnitude and direction of the total force.

Answer
(a) The �gure shows the forces ~F1 and ~F2 exerted by the
charges q1 and q2 . We �rst calculate the magnitudes of
these forces:

F1 = k
q1q3

r2
1

= 9 × 109 ×
(3 × 10−6) × (4 × 10−6)

0.052

F1 = 43 N
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F2 = k
q2q3

r2
2

= 9 × 109 ×
(2 × 10−6) × (4 × 10−6)

0.032

F2 = 80 N
The total force is ~F = ~F1+~F2 , and we calculate its components
as follows:

Fx = F2 − F1 cos 53◦ = 80 − 43 × 0.6 = 54 N
Fy = −F1 sin 53◦ = −43 × 0.8 = −35 N

(b) We calculate the magnitude and angle of the force with
the known components:

F =

√
F2

x + F2
y = 64 N

tan θ =
Fy

Fx
=
−35
54

= −0.65 → θ = −33◦

Example 14.3

The distance between the charges q1= + 1 mC and q2= + 9 mC
shown in the �gure is 1 m . Where should a third charge q3 be
placed such that the net force exerted on it is zero?

Answer
As the charges q1 and q2 have the same sign, they exert
force in the same direction upon the charges on the outside.

Only the forces they exert at the points in between will be in
the opposite directions. Let x be the coordinate of the point
upon which the forces cancel each other out. Accordingly,
we write the total force and set it as equal to zero:

F1 = F2 → k
q1q3

x2 = k
q2q3

(1 − x)2

Simplifying, we get a quadratic equation:
q1

x2 =
q2

(1 − x)2 → (q2 − q1) x2 + 2q1x − q1 = 0

8x2 + 2x − 1 = 0
The roots of this equation are −0.5 and +0.25 . We will not
consider the negative root, as it will be outside of the charges.
Therefore, the solution is the positive root:

x = 0.25 m .

14.3 ELECTRIC FIELD

The Coulomb law is a force exerted between two charges at a distance. New-
ton’s gravitational force is likewise exerted between two masses a distance apart
from each other. This property of “action at a distance” was disturbing for many
scientists, including Newton. Just think about it: A charge q1 examines its sur-
roundings, detects the presence of another charge q2 , determines its distance and
charge, and then exerts Coulomb’s force accordingly. Is this believable?

The English scientist Michael Faraday (1791–1867) suggested the concept of
an electric �eld to resolve this problem. According to Faraday, when a charge q1
is placed anywhere, it a�ects every point of the surrounding space and produces

Figure 14.12: First the charge
q1 produces the electric �eld.
The force ~F=q2~E acts on charge
q2 in this �eld.

an electric �eld (Figure 14.12). This electric �eld always remains there, even if no
other electrical charge exists. A second charge q2 that is placed later interacts
with this electric �eld through Coulomb’s law. In other words, the �rst charge
does not check the position and value of the second charge. The concept of �eld
was later taken much further in modern physics and was understood to be a
correct approach.

Figure 14.13: If a force ~F acts
on test charge q0 there is an
electric �eld ~E=~F/q0 at that
point.

Since a charge interacts with the surrounding electric �eld, let us take a very
small positive q0 test charge and place it at a point in space. If the electrostatic
force acting on this charge q0 is ~F , then the electric �eld at that point in space
is de�ned as:

~E =
~F
q0

(The Electric Field) (14.6)

The inverse is also true: The force acting on a charge q in the presence of an
electric �eld ~E is,

~F = q ~E (14.7)

Let us emphasize the main properties of an electric �eld:
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• An electric �eld can also be considered as the “force acting on a unit charge.”

• The unit of electric �eld is newton/coulomb (N/C) .

• The positive test charge q0 used in the de�nition is selected as very small, in
order not to disturb the distribution of the electric �eld in the environment.
In a more correct de�nition, it would be necessary to take the limit q0 → 0 ,
but we will not worry about this detail.

• According to this de�nition, the electric �eld ~E and the force vector ~F on
a charge q will have the same direction if the charge q is positive, and the
opposite direction if negative. An easy-to-remember rule is derived from
this:
Positive charges always try to go along with and negative charges always try to
go opposite to the electric �eld.

Electric Field of a Point Charge
As the simplest case, let us calculate the electric �eld produced by a point

charge q located at the origin, at a point with position vector ~r . According to
the de�nition, we place a positive test charge q0 at position ~r and examine the
force exerted upon it (Figure 14.14). If we write Coulomb’s law for the charges q
and q0 , the magnitude of the force is

F = k
qq0
r2

From here, according to the de�nition of the electric �eld, we �nd that
Figure 14.14: Electric �eld of a
point charge.E =

F
q0

=
kq
r2

The direction of this electric �eld depends on the sign of charge q (Figure 14.15):
If q is positive, it will be away from the origin, in other words, in the same
direction as ~r , as it shall repel the other positive test charge q0 . If q is negative,
it will attract the test charge, q0 , in other words, the force will be towards the
origin and in the direction of −~r .

Figure 14.15: Electric �eld
vectors are outwards from the
+ charge (along unit vector r̂ ), in-
wards towards the – charge (op-
posite to r̂ ).

It is possible to show both cases in a single expression. Remember the concept
of unit vector that we de�ned in Chapter 1: We de�ned the vector â as the unit
vector in the same direction as the vector ~a . Here, if we use r̂ to indicate the
unit vector along the position vector ~r , the electric �eld vector of a point charge
can be expressed as follows:

~E =
kq
r2 r̂ (Electric �eld of a point charge) (14.8)

This expression gives the correct direction for both a positive and a negative
charge q . If q is positive, ~E and ~r are in the same direction. If q is negative, ~E
is in opposite direction to ~r .
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Electric Field of a System of Charges
Just as the Coulomb force of several charges could be written as the sum of

vectors, the same is also true for the electric �eld. The net electric �eld at any
point P due to N charges such as q1, q2, . . . qN will be the vector sum of the
electric �eld exerted by each one:

~EP = ~E1 + ~E2 + · · · + ~EN =
∑

i

~Ei

If ~r1,~r2 . . .~rN are the position vectors of point P as measured from each charge,
Figure 14.16: The electric �eld
of multiple point charges.

and if we use the unit vectors along them, we get

~EP =
kq1

r2
1

r̂1 +
kq2

r2
2

r̂2 + · · · +
kqN

r2
N

r̂N = k
∑

i

qi

r2
i

r̂i (14.9)

Electric Field Lines
Unfortunately, the electric �eld is not visible, and it is di�cult to imagine

certain cases. Michael Faraday, who suggested the concept of the electric �eld,
developed the technique of electric �eld lines to make it easier to visualize
them.

We rewrite the electric �eld ~E produced by a positive charge q at any point
~r :

~E =
kq
r2 r̂

We would have to draw an in�nite number of small arrows if we wanted to
indicate this electric �eld as a separate vector at each point in space. This would
be both di�cult and impractical. Instead, let us consider the following method:

Figure 14.17: Rather than draw-
ing lots of arrows, it is more
meaningful to draw rays starting
from the charge.

Let us draw the electric �eld of a point charge at a few points by going
further away from the charge (Figure 14.17a). The lengths of these ~E vectors will
gradually get smaller. Now, we draw a single line connecting successive vectors
in a given direction, extending from the origin to in�nity (Figure 14.17b). We do
the same thing in another direction. We thus obtain a bundle that spreads out
from the origin like light beams. We put an arrow indicating the direction of the
electric �eld on each of these lines.

This simple example shows how to draw and interpret the �eld lines in the
most general case:

• At any given point, the electric �eld vector ~E is tangent to the �eld lines. The
arrow on the �eld lines determines the direction towards which we will draw
the tangent.

• The magnitude of the electric �eld at any point is proportional to the density
of the �eld lines around that point. For example, the electric �eld of a point
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charge decreases with distance from the origin; therefore, the �eld lines also
diverge from each other. In Figure 14.18, the electric �eld at point A is greater
than that at point B .

• The electric �eld will be towards the origin at each point if the point charge
at the origin is a negative. Therefore, electric �eld lines start at positive charges

Figure 14.18: At which point
is the magnitude of the electric
�eld greater?

and end at negative charges or at in�nity.

• Electric �eld lines never intersect. If the opposite was true, it would be as if
there could be two tangents, in other words, two electric �elds at that point.

Example 14.4

(a) The magnitude of the electric �eld is measured as
10 000 N/C at a distance of 1.5 m from a point charge.
What is the charge?

(b) What is the force exerted on an electron placed at 1 mm
distance from such a charge? (Electron charge: qe= − e
= − 1.6×10−19 C ).

Answer
(a) We write the expression for the electric �eld at distance r
from a point charge q and solve for q :

E =
kq
r2 → q =

r2E
k

We substitute the values and calculate q :

q =
1.52 × 10000

9 × 109 = 2.5 × 10−6 C = 2.5 µC

(b) The force acting on the charge qe in the �eld ~E is ~F=qe ~E .
If we write the expression for the electric �eld E of a point
charge, the magnitude of the force is as follows:

F = |qe|E = e
kq
r2

Substituting the value q found in item (a), the electron charge
e and the distance r = 0.001 m , we calculate the force as fol-
lows:

F = 1.6 × 10−19 ×
9 × 109 × 2.5 × 10−6

0.0012 = 3.6 × 10−9 N .

Example 14.5

There is a vertically upward constant electric �eld E=10 N/C
in a region. An electron is thrown with a horizontal velocity
of v0=106 m/s at a height of h=2 m from the ground. (For the
electron, me=9.1 × 10−31 kg and qe= − e = −1.6 × 10−19 C .)
Ignoring gravitational force,
(a) What is the acceleration of the electron?
(b) Calculate the horizontal range of the electron.

Answer
The force acting on a charge q in a �eld ~E is ~F = q~E . As the
charge of the electron is q = −e , the exerted force shall be

opposite to the �eld ~E , in other words, downward. We write
Newton’s second law:

F = ma → qE = ma → a =
qE
m

This acceleration will be downward. We substitute the values
and calculate the acceleration:

a =
1.6 × 10−19 × 10

9.1 × 10−31 = 1.8 × 1012 m/s2

(b) This is a projectile motion problem with the acceleration
g replaced by acceleration a . We �nd the range R by �nding
the time t from the vertical component of the motion and
using it in the horizontal motion:

h = 1
2 at2 → t =

√
2h/a

R = v0t = v0
√

2h/a

R = 106 ×

√
2 × 2

1.8 × 1012 = 1.5 m

Example 14.6

Calculate the total electric �eld at points A and B due to
charges q1 and q2 shown in the �gure.

Answer
The electric �eld of a point charge is outward from positive

charges and inwards towards negative charges. Accordingly,
the �elds ~E1 and ~E2 at points A and B are shown below:

Therefore, we �rst calculate the �eld magnitudes E1 and E2
at these points and take their vector sum.
At point A:

E1 =
kq1

r2
1

=
(9 × 109) × (5 × 10−6)

32 = 5000 N/C
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E2 =
kq2

r2
2

=
(9 × 109) × (2.5 × 10−6)

52 = 900 N/C

We add the parallel electric �elds at point A:
EA = E1 + E2 = 5900 N/C (towards right).

At point B:

E1 =
kq1

r2
1

=
(9 × 109) × (5 × 10−6)

(8 + 2)2 = 450 N/C

E2 =
kq2

r2
2

=
(9 × 109) × (2.5 × 10−6)

22 = 5600 N/C

We subtract the opposite electric �elds at point B:
EB = E1 − E2 = −5150 N/C (towards left).

Example 14.7

Calculate the components of the total electric �eld due to charges
q1 = 5 µC and q2 = −3 µC at point P .

Answer
The �gure shows the electric �elds ~E1 and ~E2 produced by

the charges q1 and q2 at point P.
We �rst calculate the magnitudes of these �elds separately:

E1 =
kq1

r2
1

=
9 × 109 × 5 × 10−6

52 = 1800 N/C

E2 =
kq2

r2
2

=
9 × 109 × 3 × 10−6

42 = 1690 N/C

We then calculate the components of the vector ~E = ~E1 + ~E2 :
Ex = E1 cos 53◦ = 1800 × 0.6 = 1080 N/C
Ey = E1 sin 53◦ − E2 = 1800 × 0.8 − 1690 = −250 N/C .

According to this result, as the x -component is positive and
the y -component is negative, the vector ~E is in the 4th quad-
rant of the plane.

Example 14.8

The �gure shows the charges q, 2q, 3q and 4q respectively
placed on the corners of a square with side length a . Calculate
the electric �eld at point P in the center of the square.

Answer
This problem is a good example of the use of symmetry. It is
not necessary to calculate the electric �eld of four separate
charges, because there is mutual symmetry. The electric �eld
is zero at the center of two diagonally opposite equal charges,
because they are equal and in opposite directions. Therefore,

we can mutually decrease the charges at diagonally opposite
sides of point P . We get the following in the end:

Therefore, we can solve this simpler problem. The x -
component of the total electric �eld of equal 2q charges
at point P is zero. For the y -component, it is su�cient to
�nd one of the y -components and multiply it by 2:

E = Ey = 2E1y = 2E1 sin 45◦ = 2
k2q

(a/
√

2)2
·

1
√

2

E =
4
√

2kq
a2

Example 14.9

Electric dipole. The system consisting of two equal and oppo-
site ±q charges with a small distance a in between is called an

electric dipole. The properties of this neutral system is important
in many applications.

The electric �eld of the dipole plays an important role in the
structure of matter. The attraction between neutral molecules,
the operating principle of radio and TV antennas, the behavior
of dielectric materials, etc., all result from the electric properties
of dipoles.

(a) Find the expression for the total electric �eld at point P
located at distance r from the perpendicular bisector of
the charges.

(b) Find the limit of the electric �eld very far away from the
dipole, when r � a .
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Answer
(a) If we use ~E+ and E− to indicate the electric �elds of the
charges ±q , the total electric �eld at point P will be the vector
sum of these two:

~E = ~E+ + ~E−
The magnitude of the electric �elds of point charges ±q is
equal at distance

√
r2 + (a/2)2 :

E+ = E− =
kq

r2 + a2/4
If we use the components of these two vectors to calculate
the components of the total vector ~E , the x -components are
equal and in opposite directions and cancel each other out
due to symmetry. Therefore, we only calculate and add the
y -components:

Ex = E+x + E−x = 0
Ey = E+y + E−y = 2E+ cos θ
E = Ey

We �nd the cosine of the angle in the �gure and substitute it
as follows:

cos θ =
a/2√

r2 + a2/4

E =
kqa

(r2 + a2/4)3/2

We de�ne a new quantity called the dipole moment here:

p = q a (dipole moment) (14.10)

Accordingly, the expression for the electric �eld of a dipole is
as follows:

E =
kp

(r2 + a2/4)3/2

(b) At very long distances, in other words, when r � a , the
term a2 in the denominator can be neglected with respect to
the other term. The limit �eld of the electric dipole is thus as
follows:

E ≈
kp
r3 (for r � a)

The essential property of the dipole is that the dipole �eld de-
creases as 1/r3 , whereas the �eld of a point charge decreases
as 1/r2 .
The electric �eld of a dipole has the following distribution in
space:

Electric Field of Continuous Charge Distributions
Although an electric charge consists of point charges at the atomic scale, the

small distances between them are indistinguishable at the macroscopic scale and
appear as continuously distributed. The integration technique must be used to
calculate the electric �eld produced by continuous charge distributions.

Let us divide a charge continuously distributed over a region into small ele-
ments with charges ∆q1,∆q2, . . . , each with a very small dimension (Figure 14.19).
We can use Eq. (14.8), which we found for a point charge, to express the contribu-
tion of any one of these items to the electric �eld at point P . For example, the
contribution of element i is

Figure 14.19: The ∆~E contri-
bution in the electric �eld by a
small item ∆q .

∆~Ei =
k ∆qi

r2
i

r̂i

The electric �eld of the whole charge distribution will be approximately the vector
sum of these small contributions:

~E ≈
∑

i

∆~Ei =
∑

i

k ∆qi

r2
i

r̂i

Then, the approximate expression becomes exactly correct at the limit ∆qi → 0
and the sum turns into an integral:

~E = lim
∆qi→0

∑
i

k ∆qi

r2
i

r̂i

~E = k
∫

dq
r2 r̂ (continuous charge distribution) (14.11)
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This vector integral should not be confused with the one-dimensional integral
with which we are familiar. The contribution of each charge item is in a di�erent
direction and a separate integral is required for each of their components. We
shall see how this is performed in the worked examples below.
Charge Densities

Distribution of a continuous charge over a region can be expressed more
clearly using the concept of charge density. This will make it easier to incorporate
the charge element dq into the integral expression above.

Let us review possible charge distributions and their corresponding charge
densities (Figure 14.20):

Figure 14.20: Linear charge den-
sity λ , surface charge density σ
and volume charge density ρ .

• Linear charge density (λ) : If the total charge Q is evenly distributed over
a rod with length L , the linear charge density is

λ =
Q
L

(unit: C/m) (14.12)

• Surface charge density (σ) : If the total charge Q is evenly distributed
over a surface A , the surface charge density is

σ =
Q
A

(unit: C/m2) (14.13)

• Volume charge density (ρ) : If the total charge Q is evenly distributed in
a volume V , the volume charge density is

ρ =
Q
V

(unit: C/m3) (14.14)

With the above de�nitions of charge densities, we can express the charge element
dq in terms of either line, surface or volume elements (dL, dA, dV ), depending
on the given distribution, as will be seen in the worked examples below:

dq = λ dL dq = σ dA dq = ρ dV (14.15)

Example 14.10

In�nite line of charge. An in�nite linear wire has uniform
linear charge density λ . Calculate the electric �eld at a distance
r from the wire.

Answer
Let us take the wire as the x -axis, as shown in the �gure.
We write the contribution of a small charge element with
thickness dx located at a distance x , to the electric �eld at
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point P . If the unit length has charge λ , then dx will have
charge dq = λ dx :

dE =
k dq

x2 + r2 =
kλ dx

x2 + r2

The components of these small d~E contributions will be the
components of the total �eld. However, the Ex components
will add to zero due to symmetry, because the mutual con-
tributions of points on both sides of the origin are opposite
along the x direction:

Ex =

∫
dEx = 0

Therefore, the �eld E is the integral of only the y -
components:

E = Ey =

∫
dEy =

∫
dE cos θ

E = kλ
∫

cos θ dx
x2 + r2

Substituting the cosine term as cos θ = r/
√

x2 + r2 and tak-
ing into consideration that the charges are distributed over
the range [−∞,+∞] , we get

E = kλr
∫ +∞

−∞

dx
(x2 + r2)3/2︸                ︷︷                ︸
2/r2

We �nd the result of this integral to be 2/r2 from the integral
tables. Therefore, the electric �eld of an in�nite line of charge
is as follows:

E =
2kλ

r

Example 14.11

Ring of charge. A total charge Q is evenly distributed over a
thin wire bent into a ring with radius R . Calculate the electric
�eld at a point P located at distance h on the axis of the ring.

Answer
According to the coordinate system in the �gure, let us con-
sider a piece of arc with length ds on the circle. We write the
contribution of the small charge dq on this arc to the electric
�eld at point P:

dE =
k dq
r2 =

k dq
h2 + R2

If the circle with circumference 2πR has total charge Q , the
amount of charge on the arc ds is calculated by proportioning
and then substituted:

dq =
Q

2πR
ds

dE =
kQ
2πR

ds
h2 + R2

As the piece of arc ds rotates around the circle, the perpen-
dicular components dE⊥ of these small contributions dE
will cancel each other out due to symmetry. However, the
dEx components shall always be added in the same direction.
Therefore, the total electric �eld will be the integral of these
dEx components:

E⊥ =

∫
dE⊥ = 0

E =

∫
dEx =

∫
dE cos θ =

kQ
2πR

∫
ds cos θ
h2 + R2

If we substitute the cosine of the angle as cos θ=h/
√

h2 + R2

and take all of the constants out of the integral, we get

E =
kQ
2πR

·
h

(h2 + R2)3/2

∫
ds

The integral, in other words, the sum of the arcs ds around
the circle, will be the circumference 2πR of the circle. We
simplify and �nd the electric �eld of the ring:

E =
kQh

(h2 + R2)3/2

The electric �eld will be perpendicular to the ring.

Example 14.12

Charged disk. Calculate the electric �eld at a point P located
at distance h along the axis of a disk with radius R and with
charge Q distributed evenly along its surface.

Answer
We can solve this problem using the result for the charged

ring in the previous example. Consider a ring at a radius r
with thickness dr in the small interval [r, r + dr] .
If we use dq to show the small amount of charge on this ring,
according to the previous example, its contribution to the
electric charge at point P will be as follows:

dE =
kh dq

(h2 + r2)3/2

In order to �nd the amount of charge dq , let us calculate the
surface area of the piece with thickness dr : If we cut this
ring out and spread, we get a long thin rectangle with width
dr and length 2πr . Its surface area will be approximately
2πr dr . If a disk with surface area πR2 has a total charge of
Q , we �nd the amount of charge on this small surface and
substitute it as follows:
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dq =
Q
πR2 2πr dr

dE =
kQh
R2

2r dr
(h2 + r2)3/2 (along the axis)

As the contributions of these small rings are always in the
same direction, we can directly integrate to �nd the total elec-
tric �eld, without any need to separate it into its components:

E =
kQh
R2

∫ R

0

2r dr
(h2 + r2)3/2

This can be calculated using the change of variable method.

We de�ne the variable u = r2 + h2 and calculate du :
u = r2 + h2 → du = 2r dr

The integral simpli�es with this variable u :

E =
kQh
R2

∫
u−3/2 du=

kQh
R2

(
−

2
√

u

)
=

kQh
R2

∣∣∣∣∣∣− 2
√

r2 + h2

∣∣∣∣∣∣R
0

Substituting the limit values and simplifying, we �nd the
electric �eld of the charged disk:

E =
2kQ
R2

[
1 −

h
√

h2 + R2

]
Example 14.13

In�nite plane of charge. Calculate the electric �eld at dis-
tance h from an in�nite plane that has a constant surface
charge density σ .

Answer
We can solve this problem using the result of the charged
disk in the previous example. Let us write the electric �eld
expression that we found above for a charged disk with radius
R :

E =
2kQ
R2

[
1 −

h
√

h2 + R2

]
First, let us write this electric �eld expression in terms of

charge density σ . If the disk’s total charge is Q and its
surface area is πR2 , its surface charge density will be

σ =
Q
πR2

We solve this expression for Q and substitute. Also, let us
express the constant k as k = 1/4πε0 :

E =
σ

2ε0

[
1 −

h
√

h2 + R2

]
Now, what will happen if the radius R of the disk goes to in-
�nity with the surface charge density σ remaining constant?
No di�erence remains between the in�nite disk and the in�-
nite plane. Therefore, this expression gives the electric �eld
of the in�nite plane at the limit R → ∞ . The second term
inside of the brackets becomes zero when the limit R→ ∞
is taken. We thus �nd the electric �eld of the in�nite plane
of charge:

E =
σ

2ε0
Note that the electric �eld is independent of h and has the
constant value σ/2ε0 everywhere.

Multiple-choice Questions

1. Which of the following are correct for the electric
charge?
I. The smallest charge is 1 Coulomb.

II. There is no smallest charge, it continuously increases
or decreases.
III. The smallest charge is the electron.
IV. The charge varies as multiples of the electron charge.
(a) I & II (b) II & III (c) III & IV (d) I & IV

2. Which of the following carries current in conductors?
(a) Electron (b) Proton (c) Ion (d) Neutron

3. What is the direction of the force acting on an electron
placed at a point at which the electric �eld is towards
the right?

(a) Right (b) Left (c) Up (d) Down

4. Which of the following is true if charge qA = +3 C and
charge qB = +2 C interact?

(a) The force on charge A is greater.
(b) The force on charge B is greater.
(c) The forces are equal.
(d) It is impossible to tell.

5. Which of the following are correct about the relation
between the structure of the atom and conductivity?
I. The electrons at the outermost orbit are weakly bonded
in conductors.
II. The electrons at the outermost orbit are strongly
bonded in insulators.
III. The electrons at the innermost orbit are weakly
bonded in conductors.
IV. The electrons at the innermost orbit are weakly
bonded in insulators.
(a) I & II (b) I & III (c) II & IV (d) I & IV

6. Which of the following are correct?
I. A neutral object has no electrical charge.
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II. A neutral object has equal number of + and -
charges.

III. There are excess electrons in a positively charged
object.

IV. There is a shortfall of electrons in a positively
charged object.
(a) I & II (b) I & III (c) II & III (d) II & IV

7. Why do insulators not conduct electricity well?
(a) They have no electric charges.
(b) Their electric charges are strongly bonded to the
nucleus of the atoms.
(c) Their atoms are neutral.
(d) Their electric charges are weakly bonded to the
nucleus of the atoms.

8. If two charges are attracting each other with a force of
100 N , what will the force of attraction be if the distance
is doubled?

(a) 10 N (b) 25 N (c) 50 N (d) 75 N

9. Two equal Q charges are repelling each other with force
F . What will the force be if both charges are increased
to 3Q?

(a) 3F (b) 6F (c) 9F (d) 12F

10. Which of the following is the de�nition of the electric
�eld?

(a) The force acting on a 1 C charge.
(b) The force acting on one electron.
(c) The energy of a unit charge.
(d) The momentum of one electron.

11. If the magnitude of the electric �eld is E0 at distance
R from a point charge, at what distance will it have the
value E0/4?

(a) 2R (b) 4R (c) R/2 (d) R/4

12. What is the force exerted upon a 5 C charge placed at a
point at which the electric �eld is 3 N/C?

(a) 3 N (b) 5 N (c) 8 N (d) 15 N

13. How does the electric �eld of an in�nite line of charge
vary with the distance r from the wire?

(a) It is proportional to r.
(b) It is inversely proportional to r.
(c) It is inversely proportional to r2.
(d) It is inversely proportional to r3.

14. How does the electric �eld of an in�nite plane of charge
vary with distance?

(a) It is proportional to r.
(b) It is inversely proportional to r.
(c) It is inversely proportional to r2.
(d) It is independent of distance.

15. How does the electric �eld of an electric dipole change
with distance?

(a) It is proportional to r.
(b) It is inversely proportional to r.
(c) It is inversely proportional to r2.
(d) It is inversely proportional to r3.

16. A charge Q placed at a corner of a square produces an
electric �eld E at the center of the square. What will
the electric �eld at the center be if equal charges Q are
placed at four corners of the square?

(a) 0 (b) E/4 (c) 4E (d) 16E

17. An upward force is exerted upon an electron placed at a
point in space. In which direction is the electric �eld at
that point?

(a) Up (b) Down (c) Right (d) Left

18. A metal sphere with charge +Q is connected to an-
other neutral identical metal sphere by a conducting
wire. What will the charge of the second sphere be?

(a) −Q/2 (b) −Q (c) +Q/2 (d) +Q

19. Where is the positive (+) charge in the following �gure?
(a) A (b) B (c) C (d) Nowhere

20. Where is the negative (−) charge in the above �gure?
(a) A (b) B (c) C (d) Nowhere



254 14. THE ELECTRIC FIELD

Problems

14.2 Coulomb’s Law

14.1 Two small conducting spheres are placed with 30 cm
of distance in between. One has a +12 µC charge and the
other −6 µC . (a) What is force on one of the spheres? (b) The
spheres are connected with a conducting wire. What will the
new force be? [A: (a) 7.2 N , (b) 0.9 N .]

Problem 14.2
14.2 Calculate the total force exerted upon the charge
q3=3 µC by the charges q1=5 µC and q2= − 4 µC shown
in the �gure. [A: 420 N .]

Problem 14.3
14.3 (a) Calculate the components of the total force exerted
upon the charge q3= + 3 µC by the charges q1= + 5 µC and
q2=−2 µC in the �gure. (b) Find its magnitude and direction.

[A: (a) Fx=43, Fy= − 27 N , (b) F=51 N and −33◦ ]

Problem 14.4
14.4 The distance between the charges q1= + 9 mC and
q2=−4 mC shown in the �gure is 2 m . Where should a third
charge q3 be placed such that the net force exerted upon it
is zero? [A: 4 m to the right of q2 .]

Problem 14.5
14.5 The two identical spheres shown in the �gure with mass
m=30 g and charge q are suspended from the ceiling with
two ropes of length L=1 m . What is the charge of the spheres
if the ropes each have an angle of 37◦ with the vertical in
equilibrium? [A: |q| = 6 µC .]

14.3 Electric Field

14.6 A 3.2 × 10−15 N force acts on an electron placed at a
point in space. What is the magnitude of the electric �eld at
that point? (Electron charge: e = −1.6 × 10−19 C .)

[A: 20 000 N/C .]

Problem 14.7
14.7 A ball with a mass of 3 g and a charge of 4 µC is sus-
pended from the ceiling with a rope as shown in the �g-
ure, in a region with a uniform horizontal electric �eld of
E=10 000 N/C . Calculate the angle of the rope with respect
to the vertical. [A: 53◦ .]

Problem 14.8
14.8 The charges q1=3 µC and q2= − 8 µC in the �gure
are tied to each other with a rope of length 1 m . These two
charges are placed in a region with a uniform electric �eld of
E=5 × 106 N/C and the charge q1 is nailed and �xed to its
location. Calculate the tension in the rope. [A: T = 40 N .]

Problem 14.9
14.9 There is a vertically downward constant electric �eld
E = 1000 N/C in a region. A proton is thrown with a hori-
zontal velocity of v0=106 m/s at a height of h=1 m from the
ground. (a) What is the acceleration of the proton? (b) Cal-
culate the horizontal range of the proton. (m=1.7 × 10−27 kg
and q = e = 1.6× 10−19 C for the proton and ignore gravity.)

[A: (a) 9.4 × 1010 m/s2 , (b) R = 4.6 m .]

Problem 14.10
14.10 Calculate the total electric �eld of the charges q1 and
q2 shown in the �gure at points A and B .

[A: (a) −1380 N/C , (b) +4430 N/C .]

Problem 14.11
14.11 Calculate the components of the total electric �elds at
point P due to charges q1 = 5 µC and q2 = −2 µC .

[A: Ex = 315, Ey = 1080 N/C .]
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Problem 14.12
14.12 Two equal charges +q , with a small distance a in be-
tween are shown in the �gure. (a) Find the expression for the
electric �eld at distance of r from the perpendicular bisector
of the charges. (b) What will the limit of the electric �eld be
when r � a? [A: (a) 2kqr/(r2 + a2/4)3/2 , (b) 2kq/r2 .]

Problem 14.13
14.13 What is the electric �eld at point P of the isosceles
triangle shown in the �gure? [A: 2kq/a2 .]

Problem 14.14
14.14 The �gure shows the charges at the corners of a regu-
lar hexagon with side length a . Calculate the electric �eld at
point P in the center of the hexagon.

[A: E =2kq/a2 to the right.]

Problem 14.15
14.15 The regular pentagon shown in the �gure with side
length a has equal charges q on all but one corner. Calculate
the electric �eld at point P in the center of the pentagon.
(Hint: Use symmetry.) [A: E = 1.38kq/a2 upwards.]

14.16 In example 14.11, the expression for the electric �eld
of a charged ring with radius R , at distance h along its axis
was found to be

E =
kQh

(h2 + R2)3/2

As E=0 for h=0 and for h→∞ , the electric �eld must be at
a maximum at a point in between. At what distance h will
the electric �eld be at a maximum? (Hint: The �rst derivative
is zero at the maximum.) [A: h = R/

√
2 .]

Problem 14.17
14.17 Find the total electric �eld in the region between the
two parallel planes shown in the �gure above with surface
density ±σ . (Hint: Use the result from Example 14.13.)

[A: σ/ε0 .]

Problem 14.18
14.18 The �gure shows two in�nite wires placed in parallel
at a distance of 2a and with linear charge densities ±λ . Find
the total electric �eld at the point P in the center. (Hint: Use
the result from Example 14.10.) [A: 4kλ/a .]

Problem 14.19
14.19 The �gure shows a �nite line of charge with length a
and uniform linear charge density λ . Use integration to cal-
culate the electric �eld at point P located along the extension
of the wire at distance a . [A: E = kλ/2a .]

Problem 14.20
14.20 The inner radius of the hollow disk shown in the �gure
is a and its outer radius is b . The total charge Q is evenly
distributed over the surface of the disk. Calculate the electric
�eld at distance h along the disk axis. (Hint: Use the method
in example 14.12.)

[A: E =
2kQ

b2 − a2

[ h
√

a2 + h2
−

h
√

b2 + h2

]
.]



15
GAUSS’S LAW

This natural phenomenon in the
north and south polar regions,
known as the northern lights or
aurora borealis, occurs as a re-
sult of the collision of charged
particles incoming from the sun
with the atoms in the high atmo-
sphere.

In the previous chapter, we learned how to calculate electric �elds produced
by systems of point charges and by the continuous distribution of charges. These
involved vector sums and integrals. These integrals can sometimes be very
complex and di�cult. However, there is a very powerful and elegant technique
for calculating electric �eld. Known as Gauss’s law, this method can be used in
symmetrical charge distributions and it yields results very quickly. Although it
may seem a bit abstract, learning this method will develop your ability to think
mathematically.

15.1 ELECTRIC FLUX (Φ)

Let us place a surface A on the path of the electric �eld lines in a region. If the
�eld ~E is parallel to the surface (Figure 15.1a), then no line will pass through this
surface. And, if we wish to have the maximum amount of �eld lines pass through,
we should orient the surface perpendicular to the �eld lines (Figure 15.1b).
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Figure 15.1: (a) Parallel surface,
(b) perpendicular surface and (c)
tilted surface to the electrical
�eld lines.

The number of these �eld lines that pass through the surface A will be propor-
tional to the electric �eld, the surface area and the angle all at once. Accordingly,
the electric �ux indicated with the symbol Φ is de�ned as follows (Figure 15.2):

Φ = E A cos θ = E⊥ A (15.1)

Here, θ is the angle between the vector ~E and the normal vector n̂ . The normal
vector is the unit vector perpendicular to the surface at that point.

Figure 15.2: Electric �ux. This de�nition e�ectively shows that: (a) When θ=0 (or, the �eld lines are
perpendicular to the surface), we have maximum �ux Φ = EA , and (b) When
θ=90◦ (or, the �eld lines are parallel to the surface), we have Φ=0 . The coe�cient
cos θ in this de�nition also shows that, if the �ux of a vector passing through the
surface in one direction is positive, the �ux of a vector passing in the opposite
direction (θ=180◦ ) will be negative. In general, �ux �owing outward from a
closed surface is considered to be positive and that �owing inward to be negative.

The de�nition above is for a constant �eld ~E . The �ux of a variable electric
�eld passing through a surface of any shape is de�ned with an integral. In order
to set it up, we divide the surface A into in�nitely small ∆Ai elements and use
the �ux de�nition above for each element. The total �ux is the limit sum of these
�uxes as ∆Ai → 0 , in other words, the integral:

Φ = lim
∆Ai→0

∑
i

Ei ∆Ai cos θi =

∫
surface

E dA cos θ

This is usually a double integral, as it must be taken over the entire surface. If the
surface A is closed, a circle is added to the integral sign to indicate it:

Φ =

∮
surface

E dA cos θ (electric �ux) (15.2)

The �eld E and the angle θ inside of the integral are usually variable, and
therefore not taken outside of the integral.

15.2 GAUSS’S LAW

In order to understand the technique of Gauss’s law, let us consider a positive
point charge q at the origin (Figure 15.3). Let us draw electric �eld lines that
spread out from this charge. Let us calculate the total �ux of these electric
�eld lines on an imaginary spherical surface that we draw with radius r . (This
imaginary surface is called a Gaussian surface.)

On this Gaussian surface, the �eld ~E has the same value everywhere and is
perpendicular to it (θ = 0) . Therefore, we can calculate the total �ux without

Figure 15.3: A closed Gaussian
surface around a point charge.

having to integrate:
Φ = E A cos 0◦ = E A
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If we substitute E = kq/r2 for the electric �eld of a point charge r and A = 4πr2

for the surface area of a sphere, we get

Φ = E A =
kq

SSr2
4πSSr2

E A = 4πk q =
q
ε0

In this last expression, we replaced the constant k = 1/4πε0 with the permittivity
of free space ε0 .

This result is rather remarkable. While both the electric �eld and the surface
area on the left-hand side are dependent on the distance r , on the right-hand
side, we get a result that is independent of the distance r and only proportional
to the charge q inside! Of course, we can see how this happens: As the �eld E is
inversely proportional to r2 and the surface area A is directly proportional to r2 ,
they cancel each other out in the product.

We can argue the case that this result will be valid for all closed surfaces and
for all charge distributions as follows:

Figure 15.4: (a) The charge is
not in the center of the Gaussian
surface, (b) the Gaussian surface
is not spherical, (c) the charge is
outside the Gaussian surface.

• The result would be the same if the charge q was not located at the center
of the sphere (Figure 15.4a). Although the �eld lines that pass through the
surface are more frequent in one place and sparser in another, the number of
lines that cross the surface is still the same.

• The result would be the same if there was any other closed surface around
q instead of a sphere (Figure 15.4b). The total number of lines crossing this
surface will still be equal to that crossing the sphere.

• The situation is di�erent if the charge q is outside of the Gaussian surface
(Figure 15.4c). In this case, each �eld line entering the spherical surface will
come out somewhere else. Therefore, the sum of positive and negative �uxes
will be zero.

Φ =

∫
E dA cos θ = 0 (Charge outside Gaussian surface)

In the light of this analysis, we can express Gauss’s law as follows without
proof:

Gauss’s Law

The net electric �ux over any closed surface is proportional to
the net charge inside of the surface:∮

surface
E dA cos θ =

qinside
ε0

(15.3)
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The charge qinside on the right-hand side of the equation is the algebraic sum
of the charges inside the Gaussian surface.

Let us emphasize the important points of Gauss’s law:
• Although the law is expressed as an integral, we will actually avoid it through

symmetry considerations. If the given charges are symmetrically distributed,
we choose such a Gaussian surface that the �eld E remains the same on this
surface, and can thus be taken outside of the integral. The remaining integral
will usually be much easier to calculate.

• Regardless of how much charge is present outside of the Gaussian surface, in
the end, only the net charge inside of the surface is included in the formula.
It may seem surprising that the left-hand side of the formula has the total
electric �eld and the right-hand side has the sum of the charges inside, but it
is correct.

• Selection of the Gaussian surface is arbitrary and any surface can be chosen.
However, the surface must be closed for the law to be valid. Otherwise, the
�ux passing through the open part will not be counted.

15.3 APPLICATIONS OF THE GAUSS’S LAW

We now show the power of Gauss’s law in electric �eld calculations of various
charge distributions. In the following examples, we shall �nd formulas rather
than numerical answers. Students will thus gain the ability to make abstract
calculations.

Example 15.1

Calculate the total electric �ux passing through the closed sur-
faces S 1 and S 2 shown in the �gure, with q = 1 µC .

Answer
According to Gauss’s law, the electric �ux passing through
a closed surface is proportional only to the charge inside of

the surface:
Φ =

∮
surface

E dA cos θ =
qinside
ε0

Therefore, it is su�cient to calculate �ux from the right-hand
side of this equation. The surface S 1 contains only the charge
q :

Φ1 =
q
ε0

=
1 × 10−6

8.85 × 10−12 = 1.1 × 105 N·m2/C

The surface S 2 contains both charges:

Φ2 =
q + 3q
ε0

= 4.4 × 105 N·m2/C

Example 15.2

The cube with side length a = 1 m shown in the �gure contains
the charge q = 3 µC . What is the electric �ux passing through
one face of the cube?

Answer
It would be di�cult to calculate the electric �ux on one face

of the cube by integration, because the electric �eld varies
everywhere on this face. However, the problem becomes easy
if we consider symmetry. All six faces of the cube are equiv-
alent with respect to charge q . Therefore, the �ux passing
through one face will be 1/6 of the total �ux:

Φ1 =
Φtotal

6
Now, as the total surface is closed, we can �nd the �ux using
Gauss’s law:

Φtotal =
qinside
ε0

=
q
ε0

From here, we calculate the �ux passing through one face:

Φ1 =
Φtop

6
=

qinside
6ε0

=
10−6

6 × 8.85 × 10−12

Φ1 = 1.8 × 104 N·m2/C
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Example 15.3

Charged spherical shell. A total of charge Q is evenly dis-
tributed over a spherical surface with radius R .
(a) Find the electric �eld at distance r outside of the sphere.
(b) Find the electric �eld at distance r inside of the sphere.

Answer
(a) Let us draw an imaginary Gaussian surface with radius r
outside of the sphere (r > R) (the blue surface in the �gure
below):

The electric �eld ~E at each point on this surface should be
perpendicular to the surface due to spherical symmetry. Like-
wise, the electric �eld at each point on the surface should
have the same value because, again, according to spherical
symmetry, we go from one point to another when we rotate
the sphere.
Consequently, the electric �eld ~E should be equal and perpen-
dicular to the surface at every point on the Gaussian surface.
Let us write Eq.¨(15.3) for Gauss’s law:∮

surface
E dA cos θ =

qinside
ε0

The �eld E inside of the integral can be taken outside, as it is
constant over the surface. Also, as the angle with the normal
vector is θ = 0◦ , we get cos 0◦ = 1 :

E
∮

surface
dA =

qinside
ε0

The sum of small dA surface elements over the whole spher-
ical surface will be the total area A of the Gaussian sphere:

E A = qinside/ε0
The surface area of a sphere with radius r is A=4πr2 . The
qinside is the total charge Q . We substitute these values:

E 4πr2 = Q/ε0
We �nd the solution by solving this expression for E :

E =
Q

4πε0r2 =
kQ
r2 (for r > R)

(b) This time, we choose the Gaussian surface with radius r
inside of the sphere ( r < R ) (the blue surface in the �gure
below):

We again use the same thinking as in item (a): According to
symmetry, the �eld ~E should be perpendicular to the surface
and have the same magnitude at very point of the surface.
Accordingly, we can directly write Gauss’s law as the product
E A instead of the integral:

E A = qinside/ε0
Now, what is the charge qinside inside of the Gaussian sur-
face? As all of the charges are left outside of the Gaussian
surface,

qinside = 0 → E A = 0
Since the surface A is not equal to zero, we �nd that

E = 0 (for r < R)
Let us summarize the result:

E =

{
kQ/r2 (for r > R)
0 (for r < R)

This result will be used later for conductors.

Example 15.4

A point charge +Q is placed at the center of a spherical shell
with radius R , containing evenly distributed charge −Q . Find
the electric �eld inside and outside of the sphere.

Answer Inside of the sphere: Let us draw a spherical Gaus-

sian surface with radius r such that r < R . Due to symmetry,
the electric �eld will be the same and perpendicular to the
surface at each point on this sphere.

We write the expression for Gauss’s law: E A = qinside/ε0
Only the point charge +Q is located inside of the Gaussian
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sphere; the charge −Q on the sphere with radius R is not
taken into account, as it is outside of the surface:

qinside = +Q

E 4πr2 = +Q/ε0
From here, we �nd the electric �eld inside of the sphere:

E = kQ/r2 (for r < R)

Outside of the sphere: We draw a Gaussian surface with ra-
dius r > R . Again, due to symmetry, the �eld ~E on this

surface is the same and perpendicular to the surface at each
point. (We do not need to draw the �gure again.) We write
the expression for Gauss’s law:

E A = qinside/ε0
This time, both the point charge +Q and the charge −Q on
the sphere with radius R are located inside of the Gaussian
surface. Therefore, we get

qinside = +Q − Q = 0
E 4πr2 = 0 → E = 0 (for r > R)

Example 15.5

In�nite line of charge. Calculate the electric �eld of an in�-
nite linear wire carrying uniform linear charge density λ .

Answer
We solved this problem in Example 14.10 with a lengthy inte-
gration. Now let us see how easily it can be solved by Gauss’s
law.
As the Gaussian surface, let us chose a coaxial cylinder around

the wire with radius r and length L . The �eld ~E on the lat-
eral surface of this cylinder must be the same everywhere
and perpendicular to the surface due to symmetry.
On the base surfaces, the �eld ~E will be parallel to the surface,
in other words, do not cross it. Therefore, the �ux is zero on
the base surfaces and not taken into consideration. Let us
write the expression for Gauss’s law:

E A = qinside/ε0
A is the lateral surface here and its area is

A = 2πr L
The charge inside of the cylinder with length L is

qinside = λ L
We substitute these values:

E (2πrL) =
λ L
ε0

We simplify and �nd the electric �eld as follows:

E =
λ

2πε0 r
=

2kλ
r

Example 15.6

In�nite plane of charge. Calculate the electric �eld of an
in�nite plane carrying a uniform surface charge density σ .

Answer
Again, we previously solved this problem in Example 14.13
using integration. Now, let us see how easily it can be solved
using Gauss’s law.

As the Gaussian surface, let us chose a cylinder extending
equally to both sides of the surface by L and having a base
area of A . The �eld ~E should be perpendicular to the plane

everywhere, due to symmetry, because a certain angle in any
direction would violate symmetry. Also, it will have the same
value everywhere on the base surface, because, as the plane is
in�nite, the charge distribution does not change if any point
at the base of the cylinder is shifted onto another point.
~E will be parallel to the lateral surface of the cylinder, hence
the �ux is zero on the lateral surface and only the �ux on
the base surfaces are taken into consideration. The �ux is
positive, as E is outwards in both bases.
Accordingly, we write the expression for Gauss’s law for both
bases as follows:

E A + E A = qinside/ε0
The amount of charge inside of the cylinder is found by using
the surface charge density σ :

qinside = σ A
We substitute these values and solve for the electric �eld:

2 ESA =
σSA
ε0

E =
σ

2ε0
(Outward from the plane)

~E would have been towards the plane if its charge had been
negative.
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Example 15.7

Two in�nite plates with charge densities +σ and −σ are placed
in parallel. Calculate the electric �eld in the three regions.

Answer
After �nding the electric �eld of a single plate in the previous
example, the electric �eld of two plates can easily be found
as their vector sum. If we use ~E+ and E− to indicate the
electric �elds of the positive and negative plates, the electric
�eld magnitude of both plates will be

E± =
σ

2ε0
and will have the same value. However, as the �eld is outward
from the positively charged plate and inward towards the

negatively charged plate, the electric �elds in between and
outside of the plates will be as follows:

As shown in the �gure, we �nd the sum and di�erence of two
vectors with equal magnitudes:

E =


σ

2ε0
−

σ

2ε0
= 0 (Outside of the plates)

σ

2ε0
+

σ

2ε0
=
σ

ε0
(In between the plates)

The electric �eld between two equal and opposite charged
plates is σ/ε0 and no electric �eld �ows over outside of the
plates. This set up is frequently used in technology (tele-
visions, capacitors, etc.) to produce a region with uniform
electric �eld.

Example 15.8

Charged solid sphere. A total charge Q is uniformly dis-
tributed in a spherical volume with radius R . Find the electric
�eld outside and inside of the sphere.

Answer
Outside of the sphere: Let us take a spherical Gaussian surface
with radius r such that r > R . By symmetry, the �eld ~E on
this sphere will be the same everywhere and perpendicular
to the surface. We write the expression for Gauss’s law:

E A = qinside/ε0
The charge left inside of the Gaussian surface is the whole
charge Q :

qinside = Q
The surface area of a sphere with radius r is 4πr2 . We sub-
stitute these expressions and solve for E :

E 4πr2 = Q/ε0

E =
Q

4πε0r2 =
kQ
r2 ( r > R )

This result shows that, outside of the sphere, the electric �eld
behaves as if all of the charges were located at the center.
Inside of the sphere: Again, let us take a spherical Gaussian
surface with radius r such that r < R . The �eld ~E on this
sphere will be the same and perpendicular to the surface:

We write the expression for Gauss’s law:
E A = qinside/ε0

This time, some of the charges remain outside of the Gaus-
sian surface, and are thus not taken into consideration. The
charge inside the Gaussian surface is found using proportion.
If a sphere with radius R contains Q , a sphere with radius r
will contain

qinside =
Q

4πR3/3
4πr3

3
=

Qr3

R3

We substitute these expressions and solve for E :

E 4πr2 =
Qr3

ε0R3

E =
Qr

4πε0R3 =
kQ
R3 r ( r < R )



264 15. GAUSS’S LAW

Example 15.9

In�nite cylinder. A cylinder with in�nite length and radius
R has uniform volume charge density ρ in its volume. Find the
electric �eld in the regions outside and inside of the cylinder.

Answer
Outside of the cylinder (r>R) , the problem is the same as the
in�nite wire problem in Example 15.5. We take a cylinder
with length L and radius r as the Gaussian surface.

We write the expression for Gauss’s law:

E A = qinside/ε0
Here, A=2πr L is the area of the lateral surface. The amount
of charge inside of the cylinder is the charge inside of a vol-
ume with length L and base radius R :

qinside = ρV = ρ (πR2L)
We substitute these values:

E (2πrL) =
ρ (πR2L)

ε0
We simplify and �nd the electric �eld as follows:

E =
ρR2

2ε0 r
(r > R)

Inside of the cylinder (r < R) , we again take a cylindrical
Gaussian surface with radius r :

E A = qinside/ε0
This time, some charge is left outside of this surface and is
not taken into consideration. We calculate the charge inside
of the cylinder with length L and radius r :

qinside = ρV ′ = ρ (πr2L)
We �nd the electric �eld using this expression for charge:

E (2πrL) = ρ πr2L/ε0

E =
ρr
2ε0

(r < R)

15.4 ELECTRIC FIELD IN CONDUCTORS

Electric �elds inside of and around conductors have di�erent properties due to
the free electrons in the conductors’ structures. Gauss’s law helps us understand
these properties.

Now let us review these properties:
1. Electric �eld is zero everywhere inside of a conductor in equilibrium.

Remember the atomic structure of conductors: A neutral piece of copper
contains an equal number of positive and negative charges. The positively
charged ions are stationary, but some of the electrons can freely move inside
of the conductor. Now, suppose that there exists a nonzero �eld inside of the
conductor (~E , 0 ). In such a case, a force ~F = q~E would be exerted upon the
electrons. The free electrons would thus start moving and would continue
moving until the opposite electric �eld produced by the electrons in their
new position makes ~E = 0 inside of the conductor.

Figure 15.5: The free charges
in a conductor placed in an ex-
ternal electric �eld get reposi-
tioned to make ~E = 0 inside.

A conductor placed in an external electric �eld will again ensure that ~E = 0
inside. As shown in Figure 15.5, electrons that are randomly distributed in
the conductor start to gather in the direction opposite to the electric �eld
under the action of the force ~F = q~E , and the opposite electric �eld that they
produce will cancel the external electric �eld inside of the conductor.

2. Any excess charge given to a conductor distributes itself at the sur-
face.
Let us remember Gauss’s law:∮

surface
E dA cos θ =

qinside
ε0
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As ~E=0 is always true inside of the conductor, the left-hand side of this
equation will be zero. Accordingly the inner charge on the right-hand side
should also be zero:

Figure 15.6: The widest Gaus-
sian surface inside of a conduc-
tor.

qinside = 0

We can expand this Gaussian surface and make it encompass the conductor’s
surface from the inside (Figure 15.6). Even in this case, qinside=0 must be
true, as the electric �eld is zero inside. Therefore, the only place where the
excess charge can reside is the surface of the conductor.
But, what if there were a cavity inside of the conductor and a charge +q
was placed there (Figure 15.7)? What sort of equilibrium would occur in that
case? The conductor cannot move that charge to the surface. In order to
ful�ll the condition ~E = 0 inside, an amount of −q charge will have to move
from the outer surface to its inner surface. In this way, we will get qinside = 0
for all Gaussian surfaces drawn inside of the conductor.

Figure 15.7: +q charge in a
cavity inside of a conductor.

3. The electric �eld just outside of the surface of a conductor is always
perpendicular to the surface.
If the electric �eld was not perpendicular to the surface, it would have a
component tangent to the surface. The tangential component would exert
a force ~F=q~E and move the free electrons. As there is static equilibrium, it
means that there is no tangential �eld component acting on the electrons.
A conductor placed inside an external electric �eld (Figure 15.8) will position
its charges such that the electric �eld lines are perpendicular to the surface.

Figure 15.8: Electric �eld lines
will always be perpendicular to
the surface.

We will take these properties into consideration when applying Gauss’s law
to conductors.

Example 15.10

A thick in�nite conducting slab is placed in parallel against a
thin in�nite insulator plate carrying uniform surface charge
density σ1 . The conducting slab is neutral. (a) Calculate the
surface charge densities formed on the surfaces of the slab. (b)
Calculate the electric �eld between the plate and the slab.

Answer
(a) Equal and opposite ±σ2 surface densities occur on two
surfaces of the conducting slab placed opposite to the charged
thin plate. In Examples 15.5 and 15.6, we showed that the elec-
tric �eld of a single plate is E1=σ/2ε0 and the electric �eld
between two inversely charged plates is E2=σ/ε0 . Therefore,
the charge density σ2 should be such that there should be a

total of ~E = 0 inside of the conductor:

We set the total electric �eld to zero by taking into considera-
tion the directions of these two vectors inside the conductor:

E = E1 + E2 =
σ1

2ε0
−
σ2

ε0
From here, we �nd the charge σ2 :

σ2 =
σ1

2
(b) In Example 15.6, we showed that the electric �eld is zero
at the outer region of two equal and opposite charge planes.
Therefore, in this problem, we shall only �nd the electric �eld
of the insulator plate at the region in between the conductor
and the insulator:

E =
σ1

2ε0
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Example 15.11

A point charge +Q is placed at the center of a spherical neu-
tral conducting shell with inner radius a and outer radius b .
Calculate the electric �eld in the three regions.

Answer
We have previously learned that ~E = 0 is always true inside
of a conductor. Accordingly, it transfers −Q of its free elec-
trons from its outer surface to its inner surface in order to
cancel out the e�ect of the central point charge inside of the
conductor and the following distribution occurs:

According to this distribution, we apply Gauss’s law in each
region:
We take the area of the chosen spherical Gaussian spheres as
A = 4πr2 and calculate:
For r < a : E (4πr2) =

+Q
ε0

→ E =
kQ
r2

For a < r < b : E (4πr2) =
+Q − Q
ε0

→ E = 0

For r > b : E (4πr2) =
+Q−Q+Q

ε0
→ E =

kQ
r2

Problems

15.3 Applications of Gauss’s Law

Problem 15.1
15.1 Calculate the total electric �uxes passing through the
closed surfaces S 1, S 2 and S 3 shown in the �gure.

[A: Φ1 = 0 , Φ2 = 2q/ε0 , Φ3 = 6q/ε0 .]

Problem 15.2
15.2 The regular tetrahedron shown in the �gure has side
length a , and a charge +q is placed at its center. What is the
electric �ux passing through one face of the tetrahedron?

[A: q/4ε0 .]

Problem 15.3
15.3 There are two concentric spherical shells, as shown in
the �gure. A total charge 3q is distributed over the one with
radius a and a charge −2q is distributed over the one with

radius b . Calculate the electric �eld in the three regions.
[A: E=0 for r<a , 3kq/r2 for a>r>b , kq/r2 for r>b ]

Problem 15.4

15.4 There are two coaxial in�nite cylindrical shells, as
shown in the �gure. The one with radius a has a linear
charge density 3λ and the one with radius b has a charge
density −λ . Calculate the electric �eld in the three regions.

[A: E = 0 for r<a , 6kλ/r for a>r>b , 4kλ/r for r>b ]

Problem 15.5

15.5 Two in�nite plates with charge densities +3σ and −2σ
are placed in parallel. Calculate the electric �eld in the three
regions.
[A: σ/2ε0 on the left, 5σ/2ε0 in the middle, σ/2ε0 on the

right.]
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Problem 15.6
15.6 The spherical volume with radius a in the �gure has a
uniform volume charge density +3ρ and the spherical shell
with inner radius a and outer radius b has a uniform volume
charge density −2ρ . Calculate the electric �eld in the three
regions.

[A: E = ρr/ε0 for r < a , 5ρa3/(3ε0r2) − 2ρr/3ε0 for
a < r < b , (5a3 − 2b3)ρ/(3ε0r2) for r > b .]

Problem 15.7
15.7 The in�nite cylindrical shell with inner radius a and
outer radius b shown in the �gure has a volume charge den-
sity ρ . Calculate the electric �eld in the three regions.

[A: E=0 for r < a , ρ(r2 − a2)/2ε0r for a < r < b ,
ρ(b2 − a2)/2ε0r for r > b .]

Problem 15.8
15.8 An in�nite wire carrying a linear charge density λ is
surrounded by an in�nite conducting cylindrical shell with
inner radius a and outer radius b and carrying a volume
charge density ρ , as shown in the �gure. Calculate the elec-
tric �eld in the three regions.

[A: 2kλ/r for, 2kλ/r+ρ(r2−a2)/(2ε0r) for a<r<b ,
2kλ/r + ρ(b2 − a2)/(2ε0r) for r > b .]

15.4 Electric Field in Conductors

Problem 15.9
15.9 What are the surface charge densities produced on both

faces of a thick conductor slab placed perpendicularly to a
uniform electric �eld ~E0 ? [A: σ = ±ε0E0 .]

Problem 15.10

15.10 A +3Q charge is given to a conducting spherical shell
with inner radius a and outer radius b . A point charge +2Q
is placed at the center of the cavity inside of the conductor.
(a) What is the charge at the inner and outer surfaces of the
conductor? (b) Calculate the electric �eld in the three regions.
[A: (a) −2Q on the inside, +5Q on the outside,
(b) 2kQ/r2 for r < a , 0 for a < r < b , 5kQ/r2 for r > b .]

Problem 15.11

15.11 An in�nite wire carrying a linear charge density λ is
surrounded by an in�nite cylindrical conducting shell with
inner radius a and outer radius b , as shown in the �gure.
Calculate the electric �eld in the three regions.

[A: 2kλ/r for r < a , 0 for a < r < b , 2kλ/r for r > b ]

Problem 15.12

15.12 The thin planar layer shown in the �gure has 3σ1
in surface charge density. A neutral thick conductor slab
is placed in parallel to it. (a) What will the surface charge
density σ2 of the conductor slab be? (b) What is the electric
�eld in the region in between?

[A: (a) σ2 = ±3σ1/2 , (b) 3σ1/2ε0 .]
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ELECTRIC POTENTIAL

A “hair raising” experience. This
metal sphere, called the van de
Graa� generator, is used to ob-
tain very high potentials up to 1
million volts with only a small
amount of charge. When you
touch the sphere, your body will
be charged and your hair will
stand on end.
What is the relation between
electric potential and potential
energy? These concepts will
help us better understand the na-
ture of electricity.

Up until now we have dealt with Coulomb’s force and electric �eld, both of
which are di�cult to work with because they are vector quantities. Now, it is
time to adapt the concepts of work and energy that we developed in mechanics
into their electrical equivalents. Indeed, like the gravitational force, the electric
force is also conservative, hence we can de�ne a potential energy for electric
forces as well.

The electric potential that we shall de�ne is a scalar quantity, and thus much
easier to deal with and to solve related problems. Also, the electric potential will
help us to better understand conductors, capacitors, electric circuits, etc., and
other technological applications.
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16.1 ELECTRIC POTENTIAL

Electric Potential Energy
In Chapter 5, we de�ned the work performed by a variable force:

W =

∫ 2

1

~F · d~r

Let us also remember the force on a charge q placed in an electric �eld ~E :

~F = q ~E

Therefore, the work performed by the electrical force when this charge q is
moved from one point to another will be

W = q
∫ 2

1

~E · d~r

Again, as we discussed in Chapter 5, the work performed against conservative
forces is equal to the potential energy di�erence between the two points (Equation
5.12):

−

∫ 2

1

~Fc · d~r = U2 − U1 (16.1)

It can easily be observed that the Coulomb force between two charges will also be
conserved: In Chapter 5, we showed that a potential energy could be de�ned for
the gravitational force F=GmME/r2 . Likewise, the Coulomb force F=kq1q2/r2

will also be conservative, as it is also inversely proportional to r2 .
Therefore, an electric potential energy can also be de�ned for the electrical

force as the work performed against the force ~F = q~E :

U2 − U1 = −q
∫ 2

1

~E · d~r (Electric potential energy) (16.2)

We shall directly proceed to the concept of potential without discussing potential
Figure 16.1: The work per-
formed against the electrical
force exerted upon a charge q
in an electric �eld.

energy, as we already examined it in detail in Mechanics.
Electric Potential

The electric potential energy of the point charge q de�ned above in Eq. (16.2)
is proportional to q . Therefore, there is no use in keeping the charge q always in
the formulas. If we know the potential energy of the unit charge, we can easily
calculate the potential energy of any charge q at that point by just multiplying
them.

De�nition: If a charge q has a potential energy U at a point in space, the
electric potential at that point will be:

V =
U
q

(electric potential) (16.3)

Although the potential looks like the potential energy per unit charge, this simple
de�nition is somehow misleading: The potential at a point exists even when no
charge q is present there. Hence, we should stress that the potential is a property
of the electric �eld, and not of the charge q .
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Using this de�nition in reverse, the potential energy of a charge q placed at a
point with potential V will be

U = q V (16.4)

Therefore, if we divide Eq. (16.2) for potential energy di�erence by q , we will
obtain the expression for the potential di�erence between two points:

V2 − V1 = −

∫ 2

1

~E · d~r (Electric potential di�erence) (16.5)

More precisely, the work performed against electric forces when moving the unit
charge from one point to another, is the potential di�erence between these two
points.

It is useful to remember the following two simple rules according to this
de�nition:
• Potential decreases when moving in the direction of electric �eld lines.

• Potential increases when approaching positive charges and decreases when
approaching negative charges.

For a small displacement ∆r , the small potential di�erence ∆V can be ex-
pressed without integration as:

∆V = −~E · ∆~r (16.6)

Unit of Potential
According to the de�nition above, the unit of potential is joule/coulomb (J/C)

and is called the volt, indicated with the symbol V:

1 joule/coulomb = 1 volt = 1 V

The unit of electric �eld can also be re-expressed in terms of Volts. We had
previously de�ned the unit of electric �eld as (N/C). However, if we compare the
units in the formula ∆V = E ∆r , the electric �eld unit will be,

1
newton

coulomb
= 1 V/m

This V/m unit is used in technology, as it is more practical. The term voltage is
also used instead of potential di�erence.
Potential of Constant Electric Field

In Chapter 15, we learned that a constant electric �eld forms between two
oppositely charged parallel plates. Let us place two such plates along the x -axis,
as shown in Figure 16.2. Let the electric �eld be in the −x direction. (The reason
that we place them so is that the potential will increase in the opposite direction
to the electric �eld and we want it to increase in the +x direction.) We use
Eq. (16.5) to �nd the potential di�erence between position x1 and position x2 in
this electric �eld. As E is constant and in the −x direction, we get

Figure 16.2: Potential di�er-
ence in a constant electric �eld.V(x2) − V(x1) = −

∫ x2

x1

(−E) dx = E
∫ x2

x1

dx = E (x2 − x1)
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If we take this integral from the origin x1 = 0 to the point x2 = x , we get

V(x) − V(0) = Ex

The zero reference point of potential is always arbitrary. If we choose the negative
plate at x = 0 as the zero potential, the potential change between the plates is
found to be as follows:

V(x) = Ex (potential of a constant electric �eld) (16.7)

If the distance between the plates is d , the potential di�erence between the plates
will be V = Ed .

Example 16.1

(a) A 2 µC charge gains 0.006 J potential energy when placed
in an electric �eld. What is the potential at that point?
(b)What will the velocity of a proton be if you convert all of its
potential energy at a point with potential 1000 V into kinetic
energy? (The proton’s mass is mp = 1.7 × 10−27 kg and the
charge is e = 1.6 × 10−19 C )

Answer
(a) We write the de�nition of potential in terms of potential

energy U :
V = U/q = 0.006/(2 × 10−6) = 3000 V

(b) The potential energy of the proton at a point with potential
V will be eV . This is fully converted into kinetic energy:

1
2 mpv

2 = eV → v =

√
2eV/mp

We substitute the given values and calculate the velocity:

v =

√
2 × 1.6 × 10−19 × 1000

1.7 × 10−27 = 4.3 × 105 m/s

Example 16.2

Two parallel conducting plates with 5 mm of distance in be-
tween are connected to the terminals of a 20 V battery. (a)
What is the magnitude of the electric �eld between the plates?
(b) How much charge accumulates on one of the plates if its
surface area is 100 cm2 ?

Answer
(a) We know that a constant electric �eld E is formed be-
tween two oppositely charged plates. Also, we had found
Eq. (16.7) for the potential change in a constant electric �eld:

V = Ex
We substitute the position x = 0.005 m of the positive
charged plate and �nd the electric �eld:

E = V/x = 20/0.005 = 4 000V/m

(b) We can assume the plates to be in�nite if their dimensions
are large with respect to the distance in between. Then, the
electric �eld is given by:

E =
σ

ε0
We write the surface charge density of a plate with charge Q
and surface area A :

σ =
Q
A

E =
(Q/A)
ε0

→ Q = ε0EA

We �nd the charge of a plate by substituting the numerical
data:

Q = 8.85 × 10−12 × 4000 × 100 × 10−4

Q = 35 × 10−11 C = 0.35 nC

16.2 POTENTIAL OF A SYSTEM OF POINT CHARGES

Potential of a Point Charge
Let us rewrite the electric �eld expression of a positive charge Q located at

the origin:
E =

kQ
r2

The electric �eld will be outwards, as the charge Q is positive (Figure 16.3). We
use Eq. 16.5 to calculate the potential di�erence between position r1 and position
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r2 in this electric �eld. As the �eld E and the displacement dr are in the same
direction here, the scalar product can be written as the product E dr :

V(r2) − V(r1) = −

∫ r2

r1

E dr

Figure 16.3: Potential di�er-
ence of a point charge.V(r2) − V(r1) = −

∫ r2

r1

kQ
r2 dr = −kQ

∫ r2

r1

dr
r2 = −kQ

∣∣∣∣∣−1
r

∣∣∣∣∣r2

r1

= kQ
(

1
r2
−

1
r1

)
If we take this integral from r1 = ∞ to r2 = r , we get

V(r) − V(∞) =
kQ
r

We choose the zero reference point of the potential at in�nity, V(∞) = 0 . With
this choice, the potential for a point charge is as follows:

V(r) =
kQ
r

(Potential of point charge) (16.8)

In other words, the potential of a point charge is the work performed to bring it
from in�nity to that point.

Figure 16.4: Potential increases
towards a positive charge and
decreases towards a negative
charge.

According to this result, the potential of a positive charge is positive every-
where and the potential of a negative charge is negative. Potential increases
towards a positive charge and decreases towards a negative charge.
Potential of a System of Point Charges

When calculating the electric �eld of several charges, we have seen that the
electric �elds of the charges were added as vectors. However, the potential of a
system of point charges at a point P will be the algebraic sum of the potential of
each charge.

We can write the potential produced by charges q1, q2 . . . qN at a point P
using Eq. (16.8), which we found above for a point charge:

Figure 16.5: Potential of multi-
ple charges at point P .V =

kq1

r1
+

kq2

r2
+ · · · +

kqN

rN
=

∑
i

kqi

ri
(16.9)

The distance ri here is the distance of charge qi to the point P (Figure 16.5).
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Potential Energy of a System of Point Charges
Let us consider a system in which many charges are located at certain �xed

positions, as shown in Figure 16.6. What is the potential energy of this system?
In other words, how much work was done to bring the charges from in�nity to
these positions?

Let us �nd the answer to this question step-by-step. Let us �rst bring the
charge q1 from in�nity. No work needs to be done for this, therefore its potential
energy is zero:

U1 = 0

Then, we bring charge q2 . It will be subject to the potential of charge q1 . As the
Figure 16.6: Potential energy
of three charges.

potential is V = kq1/r , if we use the formula U = qV to calculate the potential
energy of the charge q2 placed at distance r12 , we get

U2 = q2 V1 = q2
kq1

r12
= k

q1q2

r12

and this potential energy is the energy of the (q1, q2) charge system. It would
be incorrect to consider this as belonging to q2, as we could have �rst brought
charge q2 and then charge q1 .

Now let us bring charge q3 to its position. This charge will be subject to the
potential of the charges (q1, q2) . Its potential energy at its position is

U3 = q3

(
kq1

r13
+

kq2

r23

)
= k

(
q1q3

r13
+

q2q3

r23

)
Now let us stop here and examine the potential energy of the whole system:

U = U1 + U2 + U3 = k
(
q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
(16.10)

This result can easily be generalized for more than three charges: We �nd the
interaction of each charge with the others and add them. The total energy of N
charges is expressed as follows:

U = k
∑
i< j

qiq j

ri j
(16.11)

This potential energy is due to the work performed in bringing these charges
from in�nity to these positions.
Law of Energy Conservation in Electrostatics

The law of energy conservation that we developed in Chapter 5 is also valid
in electrostatics. Since the potential energy of a point charge q is U = qV in a
given potential V , Eq. (5.17) for energy conservation can be written as follows:

1
2 mv2

1 + qV1 = 1
2 mv2

2 + qV2 (16.12)

However, unlike gravitational potential energy, the charge q can have positive
or negative contribution to potential energy depending on its sign, as we shall
see in the examples below.
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Example 16.3

The charges q1=1 µC , q2=5 µC and q3=− 2 µC are placed on
three corners of a square with side length 1 m .
(a) What will the potential at point A be?
(b) How much work needs to be done to bring a new charge

q4 = +4 µC from in�nity to point A?

Answer (a) The potential of point A is the algebraic sum of

potentials of all three charges at that point:

VA =
kq1

r1
+

kq2

r2
+

kq3

r3

VA = 9 × 109
(

1 × 10−6

1
+

5 × 10−6

√
2

+
−2 × 10−6

1

)
VA = 22 800 V .

(b) Another de�nition of potential energy is the work per-
formed to move a charge q from in�nity to point A. Therefore,
we can write the potential energy of charge q4 at point A in
terms of the potential at that point as follows:

UA = q4 VA

We substitute the values and calculate as follows:
UA = 4 × 10−6 × 22800 = 0.09 J

Example 16.4

The charges q1=1 µC and q2=−2 µC shown in the �gure with
4 m of distance in between are �xed in their current locations.
The charge q3=3 µC with a mass of 1g is released from rest
between these two charges at point A . What will its speed be
when it reaches point B?

Answer
A charge q at a point with potential V has a potential energy
U = qV . We thus write the conservation of energy for points
A and B :

1
2 mv2

A + q3VA = 1
2 mv2

B + q3VB

As charge q3 is released from rest at point A , we take vA = 0
and solve for vB :

vB =

√
2q3(VA − VB)

m
Let us calculate the potential di�erences separately:

VA =
kq1

r1
+

kq2

r2
= 9 × 109 ×

(
1 × 10−6

1
−

2 × 10−6

3

)
= 3000 V

VB =
kq1

r1
+

kq2

r2
= 9 × 109 ×

(
1 × 10−6

3
−

2 × 10−6

1

)
= −15 000 V

From here, we calculate the speed vB :

vB =

√
2 × 3 × 10−6 (3000 + 15000)

0.001
vB = 10 m/s .

Example 16.5

Charges q1=− 5 µC and q2= + 2 µC are �xed with 1 m of dis-
tance in between. A third charge q=1 µC with a mass of 1 g is
thrown with an initial velocity of 3 m/s towards q2 from point
A located along the extension of these charges at a distance of
3 m from q2 . Calculate the maximum distance that charge q
can approach.

Answer
The charge q will have zero speed at some point B that it
approaches most: vB=0 . Let us use b to show the distance of
this point to the origin. We write the conservation of energy
between points A and B :

˜ 1
2 mv2

A + qVA = 1
2 mv2

B + qVB

1
2 mv2

A + kq
(q1

4
+

q2

4 − 1

)
= 0 + kq

(q1

b
+

q2

b − 1

)
If we substitute the given values and solve for b , we get the
following result:

b = 1.7 m

Example 16.6

Electric dipole. Calculate the potential of an electric dipole at
any point in space and �nd its limit value for r � a .

Answer
We had found the electric �eld of an electric dipole in Example
14.8. Now, let us calculate its potential.
The charges ±q in the �gure are placed along the y -axis with
distance a in between. We can immediately write the electric
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potential of this dipole at a point P located at distance r from
the charge +q and with angle θ with the y -axis:

V =
kq
r
−

kq
r + ∆r

=
kq ∆r

r (r + ∆r)
Here, we indicate the distance of point P to charge +q with
r and to charge −q with r + ∆r . The potential can be found
by calculating this expression for any given point P .
We use the following approximate expressions for r � a :

∆r ≈ a cos θ
r(r + ∆r) ≈ r2

Also, the product p = q a was de�ned as the electric dipole
moment. Accordingly, the expression for potential at dis-
tances very far from the dipole is as follows:

V = k
p cos θ

r2

The equipotential surfaces of the electric dipole on the
xy -plane are shown in the �gure above. The most important
feature of this potential is that it decreases with r2 . The po-
tential of a point charge decreases with r and the potential of
a dipole decreases much faster. The electric �eld lines of the
dipole are shown in the same �gure from the positive charge
to the negative charge, as perpendicularly intersecting the
equipotential surfaces.

16.3 POTENTIAL OF CONTINUOUS CHARGE DISTRIBUTIONS

Integration is used to calculate the potential of charges distributed over a
volume, surface or line. As shown in Figure 16.7, if we consider a small charge
element dq in the region where charge is distributed, its small contribution dV
to the total potential will be like that of a point charge:

dV =
k dq

r

The potential of the whole charge distribution will be the sum of these small
contributions at the limit dq→ 0 , in other words, their integral:

Figure 16.7: The contribution
of a small charge dq on the po-
tential at point P .

V = k
∫

dq
r

(Potential of a continuously distributed charge) (16.13)

The charge element dq here is to be expressed in terms of charge density, by
examining the given charge distribution. It can be one of the following three
expressions if distributed over a line, surface or volume:

dq = λ dL dq = σ dA dq = ρ dV (16.14)

Also, note that the de�nition of potential as the integral of electric �eld ~E (Eq. 16.5)
can also be used to calculate V :

V2 − V1 = −

∫ 2

1

~E · d~r (16.15)

Example 16.7

In�nite line of charge. Find the potential di�erence between
two points located at distances a and b from an in�nite wire

with linear charge density λ .

Answer
It is easier to use the de�nition in terms of electric �eld:

Vb − Va = −

∫ b

a

~E · d~r = −

∫ b

a
E dr

Since ~E and d~r are parallel, we have ~E·d~r=E dr . The electric
�eld of an in�nite line of charge was found to be E=2kλ/r
in Example 15.5. We can use that result and integrate:
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Vb − Va = −

∫ b

a

2kλ dr
r

= −2kλ
∣∣∣∣ ln r

∣∣∣∣b
a

= −2kλ ln(b/a)

Vb − Va = −2kλ ln(b/a)

As b > a , this result shows that the potential decreases when
moving away from a positively charged wire.

Example 16.8

Charged ring. Calculate the potential along the axis at a dis-
tance h from the center of a ring with radius R carrying a total
charge Q .

Answer
Let us choose a small charge dq corresponding to a small arc

ds on the ring. We write its contribution to the potential at
point P and add the contributions of ds all over the ring, in
other words, take its integral:

V = k
∫

dq
r

= k
∫

dq
√

R2 + h2

The denominator inside of the integral can be taken outside,
as it is constant throughout the ring:

V =
k

√
R2 + h2

∫
dq

The remaining integral is the sum of all of the charges Q :

V =
kQ

√
R2 + h2

Example 16.9

Charged disk. Calculate the potential of a disk with radius R
and uniform surface charge density σ , at point P located at
distance h on the axis of the disk.

Answer
Consider a ring with thickness dr with a radius in the inter-
val [r, r + dr] . If we use dq to indicate the small amount of
charge on this ring, according to the previous example, its
contribution to the potential at point P will be as follows:

dV =
k dq
√

r2 + h2

In order to �nd the charge dq , we have to multiply the area
of the small ring with the surface charge density:

dq = σdA = σ (2πr dr)
We substitute this value and �nd the contribution of all the
rings by integrating:

V = πkσ
∫ R

0

2r dr
√

r2 + h2

We make a change of variable by de�ning a new variable
u=r2 + h2 . Then, du=2r dr . The integral is simpli�ed with
this variable u :

V = πkσ
∫

u−1/2 du = πk
(
2u1/2

)
= πkσ

∣∣∣∣2√r2 + h2
∣∣∣∣R
0

Substituting the limit values and simplifying, we �nd the
expression for the potential of the disk:

V = 2πkσ
[√

h2 + R2 − h
]

16.4 CONDUCTORS AND EQUIPOTENTIAL SURFACES

Surfaces on which the potential has the same value are called equipotential
surfaces. This is similar to the isotherms used in meteorology. For example, let
us examine the expression for the potential of a charge q at the origin:

V =
kq
r

As shown in Figure 16.8, the equipotential surfaces of a point charge are spherical
Figure 16.8: The equipotential
surfaces around a point charge
are spherical.

surfaces centered around the charge q . Likewise, the equipotential surfaces of an
in�nite line of charge are cylindrical surfaces with the line as their axis.

Let us emphasize the important features of the equipotential surfaces.
• Conductor surfaces are equipotential surfaces. In order to show this,

let us write Eq. (16.5) for potential di�erence:

V2 − V1 = −

∫ 2

1

~E · d~r
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Let points 1 and 2 be located on the conductor’s surface (Figure 16.9). As
potential di�erence is independent of the path taken, let us choose the path
that connects these two points through the inside of the conductor. However,
we had previously seen that ~E = 0 is always true inside of a conductor.
Therefore, the right hand-side of this integral is zero:

Figure 16.9: Two points on a
conductor surface. ~E = 0 =⇒ V2 = V1

In other words, no work is performed to take a charge q from one point to
another on a conductor’s surface.

• Electric �eld lines are always perpendicular to equipotential sur-
faces. For a small displacement d~r the potential di�erence was given by
Eq. (16.6): dV= − ~E·d~r . As two points very close to each other by d~r will
have the same potential on the equipotential surface (Figure 16.10), dV=0
and we get

dV = 0 =⇒ −~E · d~r = 0 =⇒ ~E ⊥ d~r

We had previously proven with Gauss’s law that electric �eld is perpendicular
Figure 16.10: A small displace-
ment d~r on a conductor surface.

to a conductor surface.
• Electric �eld as the gradient of potential. Let us consider that we take a

small step d~r from an equipotential surface with potential V , in the perpen-
dicular direction (in other words, towards ~E ). As the vectors ~E and d~r are
in the same direction, the scalar product turns into a simple product:

dV = −E dr

From here we get the relation between electric �eld and potential:

E = −
dV
dr

(16.16)

The rate of potential increase perpendicular to the equipotential surface
is called the potential gradient. Temperature gradient is mentioned in
meteorology, and its meaning is likewise the temperature increase per unit
length in the direction perpendicular to the isotherm. Therefore, electric
�eld is the negative potential gradient. The negative sign tells us that
the potential decreases in the direction of the electric �eld.

Example 16.10

Conducting sphere. Calculate the potential outside and inside
0f a conducting sphere with radius R and charge Q .

Answer
It is easier in this problem to calculate potential as the integral

of the electric �eld. We write the formula (16.5):

V2 − V1 = −

∫ 2

1

~E · d~r

If we take r1 = ∞ in this formula, we get V1 = 0 , and the
potential at point r is written as V2 = V(r) :

V(r) = −

∫ r

∞

~E · d~r =

∫ ∞

r

~E · d~r =

∫ ∞

r
E dr

(We reversed the limits of the integral and used ~E · d~r=E dr ,
as ~E and d~r are in the same direction.)
Outside of the conducting sphere (r > R) : the electric �eld
is the same as the �eld E = kQ/r2 of a point charge:
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V(r) =

∫ ∞

r

kQ dr
r2 =

∣∣∣∣∣−kQ
r

∣∣∣∣∣∞
r

V(r) =
kQ
r

( r > R )

Inside of the conducting sphere (r < R) : Let us write the
integral in two parts for a point r :

V(r) =

∫ ∞

r
E dr =

∫ R

r
E dr +

∫ ∞

R
E dr

As E = 0 is always true inside of the conductor, the �rst
integral will be zero. The other is the value that the potential
outside of the conductor takes at the surface r = R :

V(r) =
kQ
R

( r < R )

The potential inside of the conductor is constant and equal
to its value at the surface.
Let us look at a graphic of the potential of a conducting
sphere:

Example 16.11

Two conducting spheres are located far away from each other.
The one with a radius of 1 m is charged with q1=1 µC and
the other with a radius of 2 m is charged with q2=8 µC . These
two spheres are connected with a metal wire. What is the new
charge of each sphere?

Answer After the spheres are connected with a wire, they
all constitute one single conductor, and thus their potential

will be equal.
As the spheres are far away from each other, the potential on
the surface of each sphere only results from its own charge.
Let us denote q′1 and q′2 as the new charges on the spheres.
These new charges should ful�ll two conditions:
Charge conservation: q′1 + q′2 = q1 + q2 = 1 + 8

q′1 + q′2 = 9 µC (1)

Equipotential:
kq′1
r1

=
kq′2
r2

→
q′1
1

=
q′2
2

(2)

Solving (1) and (2), we �nd the new charges:
q′1 = 3 µC , q′2 = 6 µC

Example 16.12

Two concentric conducting spheres have radii a=1 m and
b=2 m , with charges Q= + 1 µC and −Q , respectively.

(a) Calculate the potential di�erence between the two spheres.
(b) A q=2 µC point charge with a mass of 1 g is released

from rest near the positively charged sphere. What will its
speed be when it reaches the negatively charged sphere?

Answer (a) The potential due to the outer conducting sphere
will be constant inside of it and equal to the value on its
surface, and it will not contribute to the potential di�erence
between a and b . Hence, the potential di�erence between
the spheres will be the potential di�erence due to the inner
sphere charged with +Q at distances a and b :

Va − Vb = kQ
(1
a
−

1
b

)
Va − Vb = 9 × 109−6

(1
1
−

1
2

)
= 4500 V

(b) We write the energy conservation law for charge q :
1
2 mv2

A + qVA = 1
2 mv2

B + qVB

v =

√
2q(VA − VB)

m
=

√
2 × 2 × 10−6 × 4500

0.001
v = 4.2 m/s

Multiple-choice Questions

1. If a 2 C charge gains 10 J in potential energy when
placed at a point, what is the potential of that point?

(a) 5 V (b) 10 V (c) 20 V (d) 40 V

2. If the distance between two parallel conducting plates is
2 m and their potential di�erence is 10 V , what is the
electric �eld between the plates?
(a) 5 V/m (b) 10 V/m (c) 20 V/m (d) 40 V/m

3. Of three conducting spheres, sphere A has a radius of
1 m and is charged with 1 µC , sphere B has a radius
of 2 m and is charged with 3 µC and sphere C has a
radius of 3 m and is charged with 6 µC . Which sphere
has greater potential?
(a) A (b) B (c) C (d) Equal

4. Of two conducting spheres with equal potentials, if the



280 16. ELECTRIC POTENTIAL

one with a radius of 1 m has a charge of 4 µC , then
what is the charge on the one with a radius of 2 m?

(a) 1 µC (b) 2 µC (c) 4 µC (d) 8 µC

5. Which of the following are correct?
I. Electrons are attracted towards higher potential.

II. Protons are attracted towards higher potential.
III. Electrons are attracted towards lower potential.
IV. Protons are attracted towards lower potential.
(a) I & II (b) I & III (c) II & III (d) I & IV

6. Which of the following is true at the middle point be-
tween point charges +Q and −Q with distance r in
between?
(a) E = 0 (b) V = 0 (c) E=kQ/r2 (d) V = 2kQ/r

7. Which of the following complies with the de�nition of
potential?

I. The potential energy of a unit charge.
II. The work performed to bring a unit charge from

in�nity to that point.
III. The product of electric �eld and charge.
IV. The electric �eld of a unit charge.
(a) I & II (b) I & III (c) II & III (d) I & IV

8. Which of the following are correct?
I. The potential is zero inside of a conductor.

II. The potential is constant inside of a conductor.
III. The potential inside of a conductor is equal to that
on the surface.
IV. The potential is in�nity inside of a conductor.
(a) I & II (b) I & III (c) II & III (d) I & IV

9. Which of the following is the potential energy of a
charge q at a place where potential is V ?

(a) V/q (b) qV (c) q2V (d) qV/2

10. Which of the following are correct?
I. Potential increases towards a positive charge.

II. Potential increases towards a negative charge.
III. Potential decreases towards a positive charge.

IV. Potential decreases towards a negative charge.
(a) I & II (b) I & III (c) II & IV (d) I & IV

11. When a +1 C charge moves freely from a point at which
the potential is 50 V to a point at which the potential is
20 V , how much does its kinetic energy change?
(a) 0 (b) −30 J (c) +30 J (d) +70 J

12. Which of the following systems consisting of two
charges has a greater potential energy?
A: q1 =q2=1 C and separated by 1 m ,
B: q1=q2=2 C and separated by 4 m ,
C: q1=q2=3 C and separated by 3 m .

(a) A (b) B (c) C (d) Equal

13. What is the electric �eld in a region where potential is
constant?

(a) 0
(b) Constant.
(c) Increasing linearly.
(d) Decreasing linearly.

14. What is the potential in a region where electric �eld is
constant?

(a) 0
(b) Constant
(c) Increasing linearly.
(d) In�nite.

15. If the radius of a conducting sphere is doubled and its
charge is increased by a factor of 4, by what factor will
its potential increase?

(a) 2 (b) 4 (c) 1/2 (d) Equal

16. What is the total potential produced at point P located
at the center of the square by the charges shown on the
corners of the square in the �gure below?

(a) 0 (b) 3kQ/a (c) 5kQ/a (d) 10kQ/a

17. Which regions of two concentric conducting spheres
charged with ±Q have constant potential?

(a) A & C (b) A & B (c) Only A (d) Only C

18. Which of the following are correct for equipotential
surfaces?
I. Conductors are equipotential surfaces.

II. Insulators are equipotential surfaces.
III. The electric �eld is perpendicular to the equipoten-
tial surface.
IV. The electric �eld is tangent to the equipotential

surface.
(a) I & II (b) I & III (c) II & IV (d) I & IV

19. Which is the expression for the potential of a point
charge?

(a) kq/r2 (b) kq/r (c) kq2/r2 (d) kq2/r
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20. Which of the following �gures is the potential of a
charged conducting sphere?

(a) A (b) B (c) C (d) D

Problems

16.1 Electric Potential

16.1 (a) How much potential energy will a 3 µC charge have
when placed at a point with a potential of 500 kV? (b) An
electron at rest at in�nity is accelerated towards a metal plate
and hits it with a speed of 6× 106 m/s . What is the potential
of the plate? (The electron’s mass is me = 9.1× 10−31 kg and
the charge is −e = −1.6 × 10−19 C .)

[A: (a) 1.5 J , (b) 102 V .]

16.2 Two identical conducting plates are placed parallel to
each other with 2 mm distance in between and are connected
to the terminals of a 24 V battery. (a) What is the magnitude
of the electric �eld between the plates? (b) If the surface area
of one plate is 100 cm2 , how much charge accumulates on
each plate? [A: (a) 12 kV/m , (b) 1.1 nC .]

16.2 Potential of a System of Point Charges

16.3 At what distance from a point charge q=5 nC will the
potential be 30 V? [A: 1.5 m .]

16.4 The potential is 100 V and the electric �eld is 80 V/m
at a certain distance from a point charge. Find the amount of
charge and the distance. [A: r = 1.25 m , q = 140 µC .]

Problem 16.5

16.5 The charges q1= − 1 µC , q2=2 µC and q3=3 µC are
placed on three corners of a square with side length of 1 m .
(a) What will the potential be at point A? (b) How much
work needs to be done to bring a charge q4 = +4 µC from
in�nity to point A? [A: (a) 39 kV , (b) 0.15 J .]

16.6 Six identical 2 µC charges are placed in equal inter-
vals around a circle with a radius of 1 m . How much work
is performed to bring these charges from in�nity to these
positions? [A: 0.52 J .]

Problem 16.7

16.7 The distance between the charges q1 = 4 µC and
q2 = −1 µC shown in the �gure is 2 m . At what point will
the potential be zero? [A: 1.6 m to the right from q1 .]

16.8 Two identical charges with masses m1=m2=1 g and
charges q1=q2=5 µC are released from rest with 2 m of dis-
tance in between. What will their speeds be when the distance
is doubled? [A: 7.5 m/s .]

Problem 16.9
16.9 The charges q1= − 1 µC and q2= + 2 µC in the �gure
above are �xed with 2 m of distance in between. A third
charge q=3 µC with a mass of 1 g is released from rest at
point A located along the extension of these charges at a
distance of 1 m from q2 . What will be its speed at in�nity?

[A: 9.5 m/s .]

Problem 16.10
16.10 The charges q1=5 µC and q2= − 8 µC shown in the
�gure with 3 m of distance in between are �xed in their cur-
rent locations. A third charge q3=1 µC with mass m3=1g
is thrown from point A between these two charges with a
speed of 10 m/s towards q1 . What is the nearest distance at
which it can approach q1 ? [A: 1.1 m .]

16.3 Potential of Continuous Charge Distribu-
tions
16.11 The potential is 400 V on the surface of a raindrop
with a radius of 1 mm . (a) What is the charge of the drop?
(b) When two such drops merge, what will the potential at
the surface of the new drop be?

[A: (a) 4.4 × 10−11 C , (b) 635 V .]

Problem 16.12
16.12 The electric �eld outside and inside of a sphere with
radius R and with a total charge Q evenly distributed over
its volume was found as follows using Gauss’s law:

E =

{
kQ/r2 (r > R)
kQr/R3 (r < R)

Calculate the potential outside and inside of the sphere.
[A: kQ/r for r > R , kQ(3 − r2/R2)/(2R) for r < R .]
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Problem 16.13
16.13 An in�nite cylindrical conducting shell with radius R
has linear charge density λ on its surface. Calculate the po-
tential di�erence between the surface of the cylinder (r = R)
and a point located outside at distance r .

[A: Vr − VR = −2kλ ln(r/R) .]

Problem 16.14
16.14 A q2=2 µC point charge with mass m2=1g is thrown
with v0=10 m/s from the center and along the axis of a ring
with radius R=1 m carrying charge q1=1 µC . What will its
speed be at in�nity? (Hint: Use the result of the Example
16.8.) [A: v∞ = 12 m/s .]

Problem 16.15
16.15 An electron is released from rest at a distance h=1 m
from a point on the axis of a disk with radius R=1 m and on
which a total charge q1=1 µC is distributed uniformly. With
what speed will it collide with the disk? (Hint: Use the result
of Example 16.9.) [A: v = 6.1 × 107 m/s .]

16.16 In Example 16.9, the expression for the potential at
distance h on the axis of a disk with radius r and carrying
σ surface charge was found as follows:

V = 2πkσ
[√

h2 + R2 − h
]

Problem 16.16
Using this result, calculate the potential at distance h on the
axis of a hollow disk with inner radius a and outer radius
b and carrying surface charge density σ . (Hint: There is

no need to take the integral again. Consider that there is a
second disk with surface charge −σ at the center of a full
disk.) [A: V = 2πkσ

[√
b2 + h2 −

√
a2 + h2

]
.]

16.4 Conductors and Equipotential Surfaces

16.17 A conducting sphere with a radius of 3 m is kept at
a 100 V potential. At what distance from the center of this
sphere will the potential drop to 50 V? [A: 6 m .]

Problem 16.18
16.18 Of two concentric conducting spheres, the one with
radius a=1 m is charged with −4 µC and the one with radius
b=2 m is charged with +4 µC . A point charge of q= − 1 µC
with a mass of 1 g is released from rest near the negatively
charged sphere. What will its speed be when it reaches the
positively charged sphere? [A: 6 m/s .]

Problem 16.19
16.19 Two identical conducting spheres located far away
from each other have a radius of 1 m . These two spheres
are connected with a metal wire and are together set to a
potential of 90 kV . (a) What is the charge on each sphere?
(b) While the spheres are interconnected, the radius of the sec-
ond sphere is increased to 2 m . What will the new charges of
the spheres be? (c) What is the new potential of the spheres?

[A: (a) q1 = q2 = 10 µC , (b) q1 = 6.7 µC , q2 = 13.3 µC , (c)
60 kV .]

Problem 16.20
16.20 Of two conducting spheres separated by d=20 m from
their centers, one has radius R1=1 m and a potential of
1000 V and the second has radius R2=2 m and a potential of
−1000 V . Calculate the charge on each sphere. (Hint: The
total potential of each sphere is the sum of its own potential
and the potential of the sphere at distance d . As the spheres
are far away, assume that the charges are evenly distributed
on their surfaces.) [A: q1 = +0.12 µC , q2 = −0.23 µC .)

?



17
CAPACITORS AND

DIELECTRICS

The Z machine at the Sandia Lab-
oratory in New Mexico. The
most powerful laboratory radi-
ation source in the world, it
works by charging a giant bank
of capacitors. When it oper-
ates, it generates more power
than 2,500 lightning bolts. It is
used in fusion energy and other
military-related researches.
What makes capacitors useful
in technology? How can we
change their properties using in-
sulating (dielectric) materials?

We discussed the basic properties of electrical forces in the previous chapters.
We can now start discussing the technological applications of electricity. We
shall �rst learn about a circuit component called the capacitor, which is used
to store charge and electrical energy. Capacitors are commonly used today in
electrical technology, in automobile spark plugs, radios and television, in camera
�ash lights and nanotechnology.

In this chapter, we will also take a closer look at the behavior of materials
placed inside of an electric �eld. We will examine how these properties can
change the performance of capacitors in energy and charge storage.
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17.1 CAPACITANCE

A system consisting of two conductors carrying equal and opposite charges
±Q in vacuum or in an insulating medium is called a capacitor. The primary
function of capacitors is to store charge under a certain potential di�erence.
Regardless of their geometric shapes, the charge ±Q stored by all capacitors is
proportional to the applied potential V :

Q = C V

The proportionality coe�cient C is called capacitance. It is the ratio of the
charge on the conductor to the applied potential di�erence:

C =
Q
V

(capacitance) (17.1)

Here, V is the absolute value of the potential di�erence V2 −V1 between the two
conductors: V = |V2 − V1| . ∆V should actually have been used to indicate this.
However, using V will not lead to any confusion in this chapter.

Capacitance depends on the geometric shape of the conductors and the prop-
erties of the intermediate insulator medium. You should think as follows to keep
this in mind: A capacitor with larger capacitance stores higher charge.

The unit of capacitance is coulomb/volt (C/V) and was named as the farad
(F) in memory of the great scientist Michael Faraday. The farad is a very large

Figure 17.1: Various capaci-
tors.

unit and its fractions are used in practice:

1 nanofarad (nF) = 10−9 F

1 picofarad (pF) = 10−12 F

Figure 17.2: The place of capac-
itors in technology: Capacitors
supplying the �ash light of a cam-
era, capacitors under the keys of
a keyboard and dynamic memory
(DRAM).

Parallel-plate Capacitor
Let us consider two parallel conducting plates (Figure 17.3). Let each have

surface area A and let the distance in between them be d . Two equal and opposite
charges ±Q will accumulate when these plates are connected to the terminals of
a battery generating potential di�erence V .

We can assume these plates to be approximately in�nite planes if the dimen-
sions of the plate are very large with respect to the distance d . Accordingly, we
had previously found the electric �eld between two in�nite planes carrying ±σ
surface charge density:

Figure 17.3: Parallel-plate ca-
pacitor connected to a battery.

E =
σ

ε0
= constant

In Chapter 16, we found the potential di�erence at distance d under a constant
electric �eld:

V = V2 − V1 = E d =
σ d
ε0
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If the plate carrying charge Q has surface area A , the surface charge density σ

will be σ = Q/A . Accordingly,

V =
(Q/A) d
ε0

and, if we write this in terms of Q ,

Q =
ε0A

d
V

Comparing with the de�nition in Eq. (17.1), we can identify the capacitance of a
parallel-plate capacitor as:

C =
ε0A

d
(capacitance of a parallel-plate capacitor) (17.2)

As you can see, capacitance is dependent on the geometric dimensions and the
permittivity of the intermediate insulator space. Capacitance increases with the
surface area of the plates and decreases with the distance between the plates.
Cylindrical Capacitor

Let us consider two coaxial conducting cylinders, both with length L (Fig-
ure 17.4). Let the internal cylinder have radius a and the outer b . We wish to
calculate the potential di�erence when these cylinders are charged with equal
and opposite charge ±Q .

The cylinders can be assumed to be approximately in�nite cylinders if their
length L is very large with respect to their radii a, b . In Chapter 15, we used
Gauss’s law to �nd the electric �eld of an in�nite cylinder with linear charge
density λ :

Figure 17.4: Cylindrical capac-
itor.

E =
2kλ

r
Let us calculate the potential di�erence without taking into consideration whether
the �eld E is positive or negative:

V = Vb − Va =

∫ b

a
E dr = 2kλ

∫ b

a

dr
r

= 2kλ ln
b
a

The linear charge density of a cylinder with length L carrying charge Q will be
λ = Q/L . Also, if we take k = 1/4πε0 , we �nd that

V =
Q

2πε0L
ln

b
a

−→ Q =
2πε0L
ln(b/a)

V

From here, we can �nd the capacitance C :

C =
2πε0L
ln(b/a)

(capacitance of a cylindrical capacitor) (17.3)

We likewise observe that capacitance is dependent only on the geometric proper-
ties of the conductors.



286 17. CAPACITORS AND DIELECTRICS

Spherical Capacitor
Let us consider two concentric conducting spherical shells with radii a and

b with a < b . Let the inner sphere with radius a be charged with +Q and the
outer with −Q . Let us use the de�nition to calculate the potential di�erence V
between these two spheres:

V = Vb − Va = −

∫ b

a
E dr

We had found the electric �eld in the region between the two spheres (a < r < b)
Figure 17.5: Spherical capaci-
tor.

as E = kQ/r2 , using Gauss’s law. Accordingly, the absolute value of the potential
di�erence is

V = kQ
∫ b

a

dr
r2 = kQ

∣∣∣∣∣ −1
r

∣∣∣∣∣b
a

= kQ
(
−

1
b

+
1
a

)
=

kQ(b − a)
ab

If we solve this expression for Q and also write the constant k in terms of ε0 ,

Q =
4πε0 ab

b − a
V

The coe�cient of V will be the capacitance C of the spherical capacitor:

C =
4πε0 ab

b − a
(capacitance of a spherical capacitor) (17.4)

Example 17.1

In a parallel-plate capacitor, the plates have a surface area of
30 cm2 and a distance of 4 mm between them. This capacitor
is connected to a 5000 V voltage (potential di�erence). (a) Find
the capacitance of the capacitor. (b) What will the total charge
accumulated on the plates be? (c) What is the electric �eld
between the plates?

Answer
(a) We use Eq. (17.2) we found for a parallel-plate capacitor:

C =
ε0A
d

=
8.85 × 10−12 × 30 × 10−4

4 × 10−3

C = 6.6 × 10−12 F = 6.6 picofarad = 6.6 pF

(b) We use the de�nition of capacitance to �nd the charge:
Q = C V = 6.6 × 10−12 × 5000 = 33 × 10−9 = 33 nC

(c) As E is constant between the plates, its relation with
potential is V = Ed :

E =
V
d

=
5000

4 × 10−3 = 1.25 × 106 V/m

Example 17.2

In a coaxial cable, the inner cylinder has a radius of 2 mm and
the outer has a radius of 4 mm . A cylindrical capacitor with
a capacitance of 1 pF is to be made from this cable. How long
should the cable be?

Answer
We use Eq. (17.3) we found for cylindrical capacitor:

C =
2πε0L
ln(b/a)

We solve for the length L and substitute the numerical data:

L =
C ln(b/a)

2πε0

L =
10−12 × ln(4/2)

2 × 3.14 × 8.85 × 10−12 = 0.012 m = 1.2 cm

Example 17.3

A parallel-plate capacitor with capacitance C=3 pF is con-
nected to a 1000 V battery.

(a) How much charge is accumulated?
(b) While the capacitor is connected to the battery, the dis-

tance between the plates is doubled. What will the new
capacitance and new charge be?

(c) When it is fully charged, the capacitor is disconnected
from the battery and then the distance between the plates
is doubled. What will the new capacitance and the new
potential di�erence between the plates be?

Answer (a) We calculate from the capacitance formula:
Q = C V = 3 × 10−12 × 1000 = 3 nC

(b) As the capacitance of a parallel-plate capacitor is inversely
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proportional to the distance d in between, C will halve if d is
doubled. And V will remain constant, because it is connected
to the battery,

Q′ = C′ V =
C
2

V =
Q
2

= 1.5 nC

(c) The charge will not change, as the capacitor is discon-
nected while it has a charge Q . The potential di�erence V
is again calculated from Q = CV , as C is halved:

V ′ =
Q
C′

=
Q

(C/2)
= 2V = 2 × 1000 = 2000 volt

17.2 COMBINATIONS OF CAPACITORS

Each circuit component used in electrical circuits is indicated with a standard
symbol. Capacitors are indicated with the symbol in circuits.

A single capacitor that performs the function of multiple capacitors in a circuit
is called an equivalent capacitor. The way to calculate an equivalent capacitor
depends on whether the connections are in series or parallel.
Capacitors in Parallel

Two capacitors are said to be connected in parallel if they are connected to
the same potential di�erence. Let two capacitors with capacitances C1 and C2 be
connected to the same battery with potential di�erence V (Figure 17.6).

Then, the charges transferred to each capacitor can be calculated using the
formula Q = CV :

Figure 17.6: Capacitors in par-
allel.

Q1 = C1 V Q2 = C2 V

The total charge drawn by the capacitors will be Q = Q1 + Q2 .
Now let us insert a single equivalent capacitor Ceq between the same points a

and b such that the same charge accumulates under the same potential di�erence:

Q = Ceq V

As the charge Q here will be the sum of Q1 and Q2 ,

Q = Q1 + Q2

Ceq V = C1 V + C2 V

Canceling V , we get the equivalent capacitance for the parallel case:

Ceq = C1 + C2

This proof is valid for any number of capacitors connected in parallel:

Ceq = C1 + C2 + · · · + CN (Capacitors in parallel) (17.5)

The equivalent capacitance in parallel is larger than each capacitance.
Capacitors in Series

Two capacitors are said to be connected in series if they are connected end
to end, without separating into another branch between them. When two such
capacitors C1 and C2 are connected to the terminals of a battery (Figure 17.7),
the outer plates will draw charges +Q and −Q . The inner plates, although they
draw no charge from the battery, cannot remain neutral; the charge +Q on the

Figure 17.7: Capacitors in se-
ries.

left plate of C1 will attract electrons in the wire to the right plate of C1 , thus
leaving the left plate of C2 with charge +Q .
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We write the potential di�erences between the points a, b and c in the �gure
and use the formula V = Q/C for each capacitor:

Vac = Vab + Vbc = V1 + V2

V =
Q
C1

+
Q
C2

The equivalent capacitor to be inserted between ac should accumulate the same
charge under the same potential di�erence:

Q
Ceq

=
Q
C1

+
Q
C2

Canceling Q , we get the equivalent capacitance for the series case:

1
Ceq

=
1

C1
+

1
C2

or Ceq =
C1C2

C1 + C2

(Note: The expression on the right is convenient for calculations, because it is
a common mistake to forget to take the inverse at the last stage when working
with sums of 1/C .)

This expression is valid for any number of capacitors connected in series:

1
Ceq

=
1

C1
+

1
C2

+ · · · +
1

CN
(Capacitors in series) (17.6)

In series connection, the equivalent capacitance is less than each capacitance. Let
us remember the following two principles (in addition to the formula Q = CV )
when solving capacitor circuits:

(1) Capacitors in parallel have equal voltage.
(2) Capacitors in series have equal charge.

Example 17.4

In the circuit shown in the �gure, we have C1 = 1 , C2 = 2 ,
C3 = 3 , C4 = 4 and C5 = 5 µF .
(a) Calculate the equivalent capacitance between the termi-

nals ab .
(b) The terminals ab are connected to a 12 V potential dif-

ference. How much charge accumulates in the equivalent
capacitor?

(c) How much charge accumulates on the capacitor C4 ?

Answer
(a) We carefully examine the �gure to seek components that
�t the de�nition of parallel or series. You should always look

for innermost capacitors.
C1 and C5 between points c and d are parallel. We use
C′ to indicate their equivalent capacitance between cd and
calculate:

C′ = C1 + C5 = 1 + 5 = 6 µF
Now, if we consider that this capacitance C′ is between cd ,
it will be in series connection with C3 . We calculate their
equivalent capacitance:

C′′ =
C3C′

C3 + C′
=

3 × 6
3 + 6

= 2 µC

Then, C4 is in parallel with C′′ . We calculate their equivalent
capacitance:

C′′′ = C4 + C′′ = 4 + 2 = 6 µF
Finally, capacitance C2 is in series with C′′′ and we �nd the
equivalent capacitance that we are looking for:

Ceq =
C2C′′′

C2 + C′′′
=

2 × 6
2 + 6

= 1.5 µF

(b) As the equivalent capacitor is connected to terminals ab ,
its potential di�erence is Vab . From here, we calculate the
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charge Q :
Q = Ceq Vab = 1.5 × 12 = 18 µC

(c) We can solve this problem calculating charges and volt-
ages alternately. First, note that the charge on C2 is equal to
the charge on the equivalent capacitor, because one terminal
of the battery directly sees the capacitor C2 without separat-
ing into another branch. We therefore write Q2 directly as
follows:

Q2 = Q = 18 µC
From here, we use the formula Q = CV to calculate the

potential di�erence over C2 :

V2 = Vdb =
Q2

C2
=

18
2

= 9 V

The potential di�erence Vab facing the battery can be written
in two parts:

Vab = Vad + Vdb → 12 = Vad + 9
Vad = 3 V

This potential di�erence is the one faced by C4 . From here,
we calculate the charge Q4 :

Q4 = C4V4 = Q4Vad = 4 × 3 = 12 µC

Example 17.5

In the circuit shown below, we have C1=1 , C2=2 , C3=3 and
C4=4 µF .
(a) First, the terminals ab are connected to a 24 V battery

when the switch S is open. Calculate the equivalent ca-
pacitance and the total charge drawn from the battery.

(b) The circuit is disconnected from the battery after charg-
ing and then the switch S is closed. Find the equivalent
capacitance and the charge on each capacitor.

Answer
(a) When the switch S is open, C1 and C4 are connected
in series; likewise, C2 and C3 are also connected in series.
Then, these two branches are connected in parallel to each
other. We calculate the equivalent capacitance accordingly:

Ceq =
C1C4

C1 + C4
+

C2C3

C2 + C3

Ceq =
1 × 4
1 + 4

+
2 × 3
2 + 3

=
4
5

+
6
5

= 2 µF

We calculate the charge of the equivalent capacitance from

the de�nition of capacitance:
Q = Ceq V = 2 × 24 = 48 µC .

(b) The connection between ab changes when the switch S
is closed. This time, the C1 and C3 are connected in parallel;
likewise, the pair C2 and C4 are connected in parallel. Then,
these two pairs are connected in series. We calculate the
equivalent capacitance accordingly:

Ceq =
(C1 + C3)(C2 + C4)

(C1 + C3) + (C2 + C4)

Ceq =
(1 + 3)(2 + 4)
1 + 2 + 3 + 4

= 2.4 µF

The total charge Q remains the same when the circuit is
disconnected from the battery as charged. But, this time, it is
di�erently distributed into two branches. As the capacitors
C1 and C3 are connected to the common points aS , they
have the same voltage:

VaS = VaS
Q1

C1
=

Q3

C3
Also, the sum of Q1 and Q3 should be equal to the initial
charge:

Q1 + Q3 = Q = 48 µC
We calculate Q1 and Q3 from these two equations:

Q1 = 12 µC , Q3 = 36 µC

The charges on C2 and C4 are calculated using the same
method applied to the potential di�erence S b . The result is:

Q2 = 16 µC , Q4 = 32 µC

Energy of a Capacitor
Capacitors have energy because of the electric charge that they carry. They

can discharge this energy in a very short duration to produce high currents or
potential di�erences. For example, although automobile batteries have a 12 Volt
potential di�erence, a capacitor circuit can produce potential di�erences up to
800–1000 V which are required to ignite spark plugs.

Let a capacitor with capacitance C have a total charge Q . Its energy will be
equal to the amount of work required to bring it from zero to the �nal charge Q .

Consider a parallel-plate capacitor initially without charge. Let us �rst take a
small charge dq1 from one of the plates and carry it to the other (Figure 17.8).
The work is zero, because no potential exists yet:

dW1 = 0
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When we try to carry the next charge dq2 , there will be a potential di�erence of
dq1/C between the plates, and therefore the work to be performed will be

Figure 17.8: Gradual charging
of a capacitor.

dW2 = dq2 V1 = dq2
dq1

C

We carry out this process repeatedly and reach the charge Q in the end. We
can calculate the energy of the capacitor by adding the works performed at each
stage.

Let q be the charge accumulated in the plates at some stage. The potential
di�erence at that stage will be V = q/C . Now, the work to be performed if we
wish to carry an additional charge dq will be

dW = dq V = dq
q
C

The work to be performed to bring the charge from zero at the start to the value
Q , in other words, the increase in the potential energy of the capacitor, will be
the integral of the small works dW :

W = UQ − U0 =
1
C

∫ Q

0
q dq =

1
C

∣∣∣∣∣∣q2

2

∣∣∣∣∣∣Q
0

= 1
2

Q2

C

The energy of the neutral capacitor is chosen as zero potential: U0=0 . Using the
formula Q = CV for the charge, the energy of a capacitor can be written under
various forms:

U = 1
2

Q2

C
= 1

2 CV2 = 1
2 QV (Energy of a capacitor) (17.7)

Example 17.6

The capacitor shown in the �gure with capacitance C1=1 µC is
charged by closing the switch S in the direction of the battery
with a potential di�erence of V=12 V .
(a) What are the charge and energy of the capacitor C1 ?
(b) The switch S is then closed in the direction of the capacitor

C2 = 2 µC . What will the charges and total energies of
the two capacitors be?

(c) How can the energy di�erence in between be explained?

Answer
(a) C2 is not taken into consideration when the switch S is
closed in the direction of the battery. We calculate the charge
as follows:

Q = C1V = 1 × 12 = 12 µC

We calculate the energy using any one of the formulas (17.7):
U = 1

2 QV = 1
2 × 12 × 10−6 × 12

U = 72 × 10−6 J = 72 µJ

(b) When the switch S is closed in the direction of C2 , the
charge Q at the start is distributed between C1 and C2 . Con-
sidering that the potential di�erences between the terminals
of these two capacitors are equal, we get

V1 = V2 →
Q1

C1
=

Q2

C2
Q1 + Q2 = Q = 12 µC

We calculate Q1 and Q2 from these two equations:
Q1 = 4 µC and Q2 = 8 µC

We use the formula U = 1
2 Q2/C to calculate the energies:

U′ = 1
2

Q2
1

C1
+ 1

2

Q2
2

C2
= 1

2

(
42

1
+

82

2

)
× 10−12+6

U′ = 24 µJ
(c) In this problem, we have U′ < U , and it seems as if the
energy of the system automatically decreased, in other words,
not conserved.



17.3. DIELECTRICS 291

This problem is actually an ideal case that is not found
in real life. Circuit wires connecting capacitors usually have
a certain resistance. When one capacitor transfers its charge
by moving electrons to the other, energy will be lost in the
resistance of wires. As a result, the energy di�erence in be-

tween gets converted into heat in the wires of the circuit.
Otherwise, if such losses did not exist, the system would not
reach equilibrium and the charge Q would go back and forth
from one capacitor to the other.

17.3 DIELECTRICS

In our analysis so far, we have assumed that there was vacuum between
the two plates of the capacitor. However, the area between the plates is �lled
with an insulating material in capacitors used in technology. These materials
include paper, glass, plastic, oil, etc. When insulators are placed in an electric
�eld, they try to accommodate their structure with the applied �eld. They are
called dielectrics to emphasize this property.

According to experimental observations:
• A capacitor accumulates more charge when a dielectric material is inserted

between the plates while it is connected to a battery. According to this
observation, the capacitance of the capacitor increases due to the formula
C = Q/V .

• When a dielectric material is inserted between the plates after a charged ca-
pacitor is disconnected, the potential di�erence between the plates decreases.
According to this observation, for example, if we recall the formula V = E d
for parallel-plate capacitors, the electric �eld between the plates decreases.

How is the material between the plates able to change the properties of the
capacitor despite the fact that it is an insulator? In order to understand this, we
need to examine the microscopic structure of dielectric materials.

Remember the concept of electric dipole from Chapter 13: We discussed
that a system consisting of two equal and opposite charges (±q) separated by
distance a is called an electric dipole. This system could produce an electric �eld
in space and interact with other charges even though it is neutral. This system
has an electric dipole moment de�ned as p = qa .

In some molecules (like H2O , NO2 , HCl ), the positions of positive and
negative charges do not coincide and they form a electric dipole. These are called
polar molecules (Figure 17.9a). They have a permanent dipole moment, even
when there is no electric �eld. When they are in an external electric �eld, they
try to align their dipole moments with it.

Figure 17.9: Polar and nonpo-
lar molecules placed in an exter-
nal electric �eld gain a dipole mo-
ment in the direction of the �eld.

In some other molecules (like O2 , CO2 , CH4 ), the positions of positive
and negative charges coincide and they have no permanent dipole moment.
However, when placed in an external electric �eld, the geometric location of the
electrons changes under the forces exerted in the opposite direction to the + and
− charges and they gain a dipole moment. These are called nonpolar molecules
(Figure 17.9b).
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Figure 17.10: The molecules of
dielectric materials placed in be-
tween the plates of a capacitor
form surface charges in the oppo-
site direction and cause the �eld
~E to decrease inside.

Regardless of their structure, dielectric molecules placed in an electric �eld
between the plates of a charged capacitor show a reaction (Figure 17.10). Polar
molecules rotate and nonpolar molecules deform to try to align their dipole
moments in the direction of the electric �eld (Figure 17.10b). Although they
cannot fully balance the electric �eld, they partially reduce its e�ect in the medium.
Induced surfaces charges are thus produced on dielectric surfaces facing the
plates (Figure 17.10c). This phenomenon is called polarization.

If we express the electric �eld produced by the charges ±Q on the plates in
terms of the surface charge density σ , we get

E0 =
σ

ε0

If we use σb to show the surface charge density induced in the opposite direction
by the bound charges of the dielectric material, the new electric �eld will result
from the net surface charge density σ − σb :

E =
σ − σb

ε0
= E0 −

σb

ε0
(17.8)

If the external electric �eld is not too strong, the amount of the induced charge σb

will be proportional to the electric �eld E that they feel in the medium. Hence,
E and E0 will be proportional, with E being smaller:

E =
E0

κ
(17.9)

The denominator of this expression is de�ned as the dielectric constant of the
medium. The electric �eld always decreases in a dielectric medium because κ>1 .

The decrease in the electric �eld will also decrease the potential di�erence
through the formula V=E d . If V0 is the potential di�erence in vacuum,

V = E d =
E0

κ
d =

E0d
κ

V =
V0
κ

(17.10)

According to the de�nition C = Q/V , we �nd the capacitance in the presence of
a dielectric medium:

C = κC0 (Capacitance of a capacitor with dielectric) (17.11)

All of these results can be expressed simply by de�ning the permittivity of the
dielectric medium as:

ε = κ ε0 (17.12)
Here, ε is the electric permittivity of the medium. Therefore, all formulas
become valid in capacitors with dielectrics by using ε instead of ε0 .

Some dielectric constants are given in the table:
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Dielectric constants and dielectric strengths of some insulators

dielectric constant dielectric strength
κ Emax (106 V/m)

Vacuum 1 —
Air 1.0006 3
Para�n 2.2 10
Paper 3.7 15
Glass 5 14
Porcelain 6 12

Figure 17.11: Use of dielectrics
in technology: Coaxial cables,
pin insulators, pure silicon layers
known as wafers in the manufac-
ture of microcircuits.

Dielectric Strength
When the magnitude of the electric �eld applied on a dielectric is too strong,

the positive and negative charges of the molecules are subject to extreme forces
in the opposite directions and their bond is broken. Molecules become ionized
and the dielectric turns into a conducting medium in which an electric discharge
is observed. The high current passing through the dielectric turns into heat,
damaging the material (Figure 17.12).

The maximum electric �eld that a dielectric medium can endure without
dielectric breakdown is called its dielectric strength. The dielectric strengths of
some materials are given in the table above.

As can be seen from the table, air cannot withstand high electric �elds. But
Figure 17.12: Cracks formed
on a plexiglass plate as a result
of dielectric breakdown.

if we insert a dielectric between the plates of a capacitor, according to Eq. 17.9,
E = E0/κ , it will have a weaker electric �eld for the same accumulated charge.
And the capacitor can operate in higher voltages without getting damaged.
van de Graaff Generator

How large an electric potential can be generated on a conductor? We can now
answer this question using what we have learned up to now about conductors
and dielectrics. Let us consider a hollow conducting spherical shell with radius
R as the simplest case. Let us remember the expressions for the potential and
surface electric �eld of this sphere:

V =
kQ
R
, E =

kQ
R2 and V = RE

In principle, the more we can increase Q , the more the potential of the conductor
will increase, until in�nity. However, this actually has a limit. The electric �eld
around the conductor increases with its potential.

The dielectric strength of the air in which the sphere is located is Emax=3 ×
106 V/m , in other words, at higher electric �elds, the air molecules get ionized
and dielectric breakdown occurs, with charges accumulated on the conducting
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sphere �owing to the ground. Therefore, the maximum potential that the sphere
can carry should ful�ll the following equation:

Vmax = R Emax

For a sphere with radius R = 1 m , we �nd that the maximum charge that it can
carry is Qmax=1/3 mC and the maximum potential produced is Vmax = 3×106 V .

But how do we charge this sphere? If we bring the charges directly, as the
electric �eld around the sphere will increase gradually, the opposing force will also
increase and it will become more di�cult to bring additional charges. However,
the following property of conductors will make it easier: Charges placed in the
internal surface of a conductor will accumulate in the outer surface. This is because
the electric �eld inside of the conductor must always be zero.

A simple diagram of the van de Graa� generator that uses this principle is
shown in Figure 17.13. In this mechanism, an insulating rubber belt moves by
turning a pulley on the lower end. A sharp metal brush connected to the positive
terminal of a battery stands very close to the belt near the bottom pulley. This
brush ionizes the air around it and transfers some of the positive charges to the
belt. A second metal brush near the top pulley has zero electric �eld around it, as
it is connected to the conducting sphere and easily collects the charges on the
belt and then transfers them to the external surface of the sphere.

Figure 17.13: Diagram of the
van de Graa� generator.

The van de Graaf generator is used in nuclear physics researches to accelerate
charged particles and operate X-ray tubes. High-voltage shows are also performed
in physics laboratories and science fairs. If your shoes are insulated from the
ground, when you touch the metal sphere, your hairs will repel each other and
stand up due to the high voltage formed on your body. (The van de Graa�
generator is not a dangerous device, despite this high potential. Considering that
the charge required for 3 million volts is on the order of merely millicoulombs,
the current that can �ow from your feet to the ground is very low.)
Lightning

In stormy weather, we hear a peal of thunder like a big explosion after a �ash
of light in the sky and understand that a lightning bolt has struck somewhere.
Lightning is the electric discharge that occurs after air becomes conductor when
the maximum value of electric �eld that the dielectric medium (air) can withstand
is exceeded, as explained above. There can be di�erent types of lightning with
di�erent structures. The most common type of lightning is explained as follows:

Water molecules that evaporate on the surface of the Earth start to rise, as
they are lighter than air. They start to condense into water droplets when they
reach the colder upper layers of the atmosphere. This mixture of microscopic

Figure 17.14: A tree struck by
lightning.

particles of water and ice collide with other rising water vapor molecules, and
ionize them by freeing their electrons. Negative electrons accumulate in the
bottom surface of the cloud and positive ions in the top surface.

Consequently, an electric �eld arises between the negative bottom surfaces
of the clouds and the Earth’s surface. As the magnitude of the electric �eld
increases, the molecules of the air in between generate a conducting path to
ensure a discharge. Hence, before the lightning strike, zigzagged fringes called
leaders consisting of ionized air molecules start to extend downward from the
clouds and upwards from the roofs on the Earth’s surface (Figure 17.15).
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Once the conducting path produced by these ionized air molecules is com-
pleted, the electric discharge occurs instantly and a very large electron current
reaches the Earth’s surfaces. The heat generated by the current causes the sur-
rounding air molecules to heat and expand. As this expansion occurs instantly, it
produces an explosive e�ect and a shockwave.

Figure 17.15: Leaders that pre-
pare the path of lightning.

As the speed of light is greater than the speed of sound, the light is observed
�rst and the sound later. As the speed of sound in air is 340 m/s, you can guess
the distance of the place where the lightning struck by counting the seconds after
it strikes (1 km per 3 seconds).

Leaders that prepare the path of lightning are usually produced on high
buildings and trees. Therefore, it can be dangerous to stay in open air or to take
shelter under a tree. The best thing to do is to crouch, but without touching the
ground with your hands, in order to not increase the conducting path.

Example 17.7

There is a 2 mm separation between the plates of a parallel-
plate capacitor. Its capacitance is C0 = 3 µF when there is
vacuum between the plates.
(a) The capacitor is connected to a battery with V0 = 12 V .

What will the charge Q0 and the electric �eld E0 between
the plates be?

(b) The capacitor is disconnected as charged and a glass layer
with dielectric constant κ = 5 is inserted between the
plates. Find the capacitance C , charge Q , potential V
and electric �eld E of the capacitor.

(c) A glass layer is inserted between the plates when the capac-
itor is still connected to the battery. Find the capacitance
C , charge Q , potential V and electric �eld E of the ca-
pacitor.

Answer
(a) We calculate Q0 from the de�nition:

Q0 = C0V0 = 3 × 12 = 36 µC
We �nd the electric �eld using the formula V = Ed in con-
stant electric �eld:

E0 =
V0

d
=

12
0.002

= 6000 V/m = 6 kV/m

(b) As the capacitor is disconnected as charged, its charge
will remain constant afterwards:

Q = Q0 = 36 µC
To calculate the new capacitance when a dielectric is inserted
in between, it is su�cient to replace the coe�cient ε0 with

κε0 in the capacitance formula (17.2) of the parallel-plate
capacitor:

C =
κε0A

d
= κC0 = 5 × 3 = 15 µF

We calculate the potential V using this capacitance C and
charge Q :

V =
Q
C

=
Q
κC0

=
V0

κ
=

12
5

= 2.4 V

The electric �eld is calculated with this potential di�erence
V :

E =
V
d

=
(V0/κ)

d
=

E0

κ
=

6000
5

= 1.2 kV/m

(c) The potential di�erence remains constant if the capacitor
is kept connected to the battery:

V = V0 = 12 V
The change in capacitance is the same when a dielectric is
likewise inserted in between:

C = κC0 = 15 µF
The charge is calculated using this capacitance and potential
di�erence:

Q = CV = (κC0) V0 = 15 × 12 = 180 µC
The electric �eld is calculated using the same method:

E =
V
d

=
V0

d
= E0 = 6 kV/m

As you may see, a capacitor connected to the same battery
accumulates higher charge when there is a dielectric but the
electric �eld between the plates still remains the same.

Example 17.8

A parallel-plate capacitor has capacitance C0 when the area
between the plates is empty. A dielectric layer with constant κ
that �lls a distance a of the total distance d between the plates

is inserted. What will the new capacitance be?

Answer

We write the capacitance C0 of the parallel-plate capacitor
before the dielectric layer is inserted as C0 = ε0A/d .

We can consider the system as two capacitors connected in
series when the dielectric is inserted. The �rst capacitor has
thickness a and dielectric constant κ1 and the second capac-
itor has thickness d − a and dielectric constant κ2 = 1 .
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Accordingly, we write the equivalent capacitance formula of
the capacitors in series as follows:

1
C

=
1

C1
+

1
C2

=
a

κε0A
+

d − a
ε0A

We factor out C0 in this expression:

1
C

=
d
ε0A

(
a
κd

+
d − a

d

)
=

1
C0

κd − (κ − 1)a
κd

From here, we �nd the capacitance C in terms of C0 and
dimensions a and d :

C =
κd

κd − (κ − 1)a
C0

In order to check the validity of this expression, we can see
that C = C0 at the limit a = 0 . Likewise, it correctly gives
C = κC0 within the limit a = d .

Example 17.9

The 4 mm wide space between the plates of a parallel-plate
capacitor is �lled with air.

(a) What is the maximum operating voltage of the capacitor?
(b) The space between the plates is �lled with a porcelain layer.

What is the maximum operating voltage this time? (Di-
electric strengths: Air: Emax = 3 × 106 V/m , porcelain:
12 × 106 V/m )

Answer
(a) The fact that air’s dielectric strength is 3×106 V/m means
that air will lose its dielectric property and turn into a conduc-
tor if the electric �eld exceeds this value. Therefore, the max-
imum potential di�erence between the plates of the parallel-
plate capacitor is calculated using this Emax value:

V = Emax d = 3 × 106 × 0.004 = 12 000 V = 12 kV

(b) A similar method is used for porcelain:
V = Emax d = 12 × 106 × 0.004 = 48 000 V = 48 kV

Example 17.10

A parallel-plate capacitor is to be manufactured with a ma-
terial with dielectric constant κ=30 and dielectric strength
15 × 106 V/m such that its capacitance shall be 1 pF and be
operating up to 30 kV voltage. What should the surface area
and distance between the plates of this capacitor be?

Answer
The electric �eld between the plates by the maximum voltage
should be equal to the dielectric strength:

V = Emaxd

From here, we calculate the distance d :

d =
V

Emax
=

30 000
15 × 106 = 0.002 m = 2 mm

We write the capacitance formula of the parallel-plate capaci-
tor with dielectric constant κ :

C =
κε0A

d
From here, we calculate the surface area A :

A =
Cd
κε0

=
10−9 × 0.002

30 × 8.85 × 10−12

A = 0.0075 m2 = 75 cm2

Multiple-choice Questions

1. What is the unit of capacitance?
(a) joule (b) volt (c) faraday (d) farad

2. In a parallel-plate capacitor, the surface area of the plates
and the distance in between are both doubled. By what
factor will capacitance increase?

(a) No change (b) 2 (c) 1/2 (d) 4

3. The capacitance of a capacitor and the applied voltage
are both doubled. By what factor will the accumulated
charge increase?

(a) No change (b) 2 (c) 1/2 (d) 4

4. A parallel-plate capacitor is disconnected after being
charged and the distance between its plates is doubled.
Which of the following are correct?

I. The charge remains the same.
II. The potential doubles.

III. The electric �eld doubles.
IV. The capacitance doubles.
(a) I & II (b) I & III (c) I & IV (d) II & IV

5. The distance between the plates of a parallel-plate capac-
itor is doubled while it is connected to a battery. Which
of the following are correct?
I. The potential di�erence remains the same.

II. The capacitance halves.
III. The charge halves.
IV. The electric �eld remains the same.
(a) I & II (b) I & III (c) I & IV (d) I, II & III

6. When two capacitors with capacitance 1 µF and 2 µF
are connected in parallel, how many µF will the equiva-
lent capacitance be?

(a) 1 (b) 3 (c) 2/3 (d) 3/2
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7. When two capacitors with capacitance 1 µF and 2 µF
are connected in series, how many µF will the equiva-
lent capacitance be?

(a) 1 (b) 3 (c) 2/3 (d) 3/2

8. A dielectric with κ = 3 is inserted between the plates of
a capacitor. By what factor will the capacitance increase?

(a) No change (b) 1/3 (c) 3 (d) 9

9. A dielectric with κ = 3 is inserted between the plates
of a capacitor charged with Q . By what factor will the
potential di�erence V increase?

(a) No change (b) 1/3 (c) 3 (d) 9

10. A dielectric with κ = 3 is inserted between the plates
of a capacitor charged with Q . By what factor will the
electric �eld increase?

(a) No change (b) 1/3 (c) 3 (d) 9

11. By what factor will the energy of a capacitor charged
with Q increase when its capacitance is doubled?

(a) 1/2 (b) 2 (c) 4 (d) 1/4

12. By what factor will the energy of a capacitor charged
with Q increase when the distance between its plates is
doubled?

(a) 1/2 (b) 2 (c) 4 (d) 1/4

13. By what factor will the energy of a capacitor increase
when the potential di�erence V applied to it doubles?

(a) 1/2 (b) 2 (c) 4 (d) 1/4

14. By what factor will the ratio Q/V increase for a capaci-
tor whose capacitance is doubled?

(a) No change (b) 2 (c) 4 (d) 1/2

15. While the capacitors are connected to the circuit, a di-
electric material is inserted between the plates, as shown
in the �gure above. What happens to the total charge
drawn from the battery?

(a) It increases.
(b) It decreases.
(c) It remains the same.
(d) It is impossible to tell.

16. While the capacitors are connected to the circuit, a di-
electric material is inserted between the plates, as shown
in the �gure above. What happens to the total charge
drawn from the battery?

(a) It increases.
(b) It decreases.
(c) It remains the same.
(d) It is impossible to tell.

17. What is the equivalent capacitance of the circuit in the
�gure above?

(a) 6 µF (b) 6/11 µF (c) 1/6 µF (d) 4 µF

18. What is the equivalent capacitance of the circuit in the
�gure above?

(a) 6 µF (b) 6/11 µF (c) 1/6 µF (d) 4 µF

19. Of two identical capacitors, one has double the charge
and half the potential with respect to the other. By what
factor is the energy of the second capacitor higher than
that of the �rst one?

(a) Equal (b) 2 (c) 1/2 (d) 4

20. Which of the following can explain the decrease in elec-
tric �eld when a dielectric is placed between the plates
of a capacitor?

I. An opposite electric �eld produced by molecular
dipoles.

II. The surface charges induced on the dielectric sur-
faces.
III. Electrons detached from molecules.
IV. The ionization of molecules.
(a) I & II (b) I & III (c) II & IV (d) I & IV
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Problems

17.1 Capacitance

17.1 A capacitor with capacitance 5 pF is to be manufactured
using two conducting plates with surface area 80 cm2 . What
should the distance between the plates be? [A: 14 mm .]

17.2 The distance between the plates of a parallel-plate capac-
itor is 2 mm and each plate has an area of 40 cm2 . Charges
±5 nC accumulate in its plates when this capacitor is con-
nected to a battery. (a) Find the capacitance of the capacitor.
(b) Find the potential di�erence of the plates. (c) Find the
electric �eld between the plates.

[A: (a) 18 pF , (b) 280 V , (c) 140 kV/m .]

17.3 A parallel-plate capacitor with capacitance C = 5 pF
is connected to a 2000 V battery. (a) How much charge is
accumulated? (b) The capacitor is disconnected as charged
and then the distance between the plates is halved. What
will the new capacitance and the new potential di�erence
between the plates be? (c) The distance between the plates is
halved while the capacitor is connected to the battery. What
will the new capacitance and new charge be?

[A: (a) 10 nC , (b) 10 pF , 1000 V , (c) 10 pF , 20 nC .]

17.4 The capacitance of a spherical capacitor was found in
Eq. (17.4) as:

C =
4πε0 ab
b − a

(a) Show that the capacitance is C=4πε0 a when the radius of
the external conductor goes to in�nity (b→ ∞ ). (b) Assume
that the Earth is a conductor and calculate its capacitance.
(Earth’s radius: 6400 km .) [A: 710 µF .]

17.5 A spherical capacitor with 10 pF in capacitance con-
sists of two conducting spheres for which the radius of one is
double that of the other. Calculate the radius of each sphere.

[A: 4.5 and 9 cm .]

17.6 A cylindrical capacitor with 1 nF in capacitance is to
be manufactured using a coaxial cable for which the radius
of the inner cylinder is 1 mm and the outer is 3 mm . How
long should the cable be? [A: 20 m .]

17.2 Connection of Capacitors

Problem 17.7
17.7 Each capacitor in the circuit shown in the �gure above
has capacitance C=1 µF . What is the equivalent capacitance
between ab? [A: 2 µF .]

Problem 17.8
17.8 Each capacitor in the circuit shown in the �gure above
has capacitance C=1 µF . What is the equivalent capacitance
between ab? [A: 15/41 µF .]

Problem 17.9
17.9 Each capacitor in the circuit shown in the �gure above
has capacitance C=1 µF . What is the equivalent capacitance
between ab? [A: 6/11 µF .]

Problem 17.10
17.10 In the circuit shown in the �gure we have C1 = 1 ,
C2 = 2 , C3 = 3 µF and V = 12 V . (a) Calculate the equiva-
lent capacitance. (b) Find the charge of the equivalent capaci-
tor. (c) Find the charge on each capacitor.
[A: (a) 1.5 µF , (b) 18 µC , (c) q1 = 6 , q2 = 12 , q3 = 18 µC .]

Problem 17.11
17.11 In the circuit shown in the �gure we have C1 = 1 ,
C2 = 2 , C3 = 3 and C4 = 4 µF . (a) Calculate the equiva-
lent capacitance between the terminals ab . (a) The terminals
ab are connected to a 12 V potential di�erence. How much
charge gets accumulated in the equivalent capacitor? (c) How
much charge gets accumulated on the capacitor C4 ?

[A: (a) 23/3 µF , (b) 92 µC , (c) 48 µC .]

Problem 17.12
17.12 The capacitor shown in the �gure above with capac-
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itance C1=4 µC is charged by closing the switch S in the
direction of the battery V=12 V . (a) What is the charge of
the capacitor C1 ? (b) The switch S is then closed in the
direction of the capacitors C2=3 µC and C3=6 µC . What is
the charge on each capacitor?

[A: (a) q1 = 48 µC , (b) q1 = 32 , q2 = q3 = 16 µC .]

Problem 17.13
17.13 In the circuit shown in the �gure above, we have C1=1 ,
C2=2 , C3=3 and C4=4 . (a) In this circuit, the terminals ab
are connected to a 12 V battery when the switch S is open.
Calculate the equivalent capacitance and the total charge
drawn from the battery. (b) The circuit is disconnected from
the battery when charged and then the switch S is closed.
Find the equivalent capacitance and the charge on each ca-
pacitor.

[A: (a) 25/12 µF and 25 µC , (b) 2.1 µF and q1 = 8.3 ,
q2 = 16.7 , q3 = 10.7 , q4 = 14.3 µC .]

Problem 17.14
17.14 Each of the 3 parallel plates shown in the �gure above
have surface area A and the distances in between them are a
and b . These plates are connected to a potential di�erence V ,
as shown in the �gure. Prove that the expression for equiva-
lent capacitance is C = ε0A(1/a+1/b) . (Hint: The conductor
plate in the center is the common plate of two capacitors.
Determine whether these two capacitors are connected in
parallel or series.)

Problem 17.15
17.15 After being charged under the same potential di�er-
ence of 20 V , the capacitors with capacitance C1=1 µF and
C2=4 µF are connected in reverse, as shown in the �gure
above, in other words, the negative charged plate of one is
connected to the positive charged plate of the other. (a) What
are the charges and total energies of the capacitors at the
start? (b) What are the �nal charges and total energies of the

capacitors?
[A: (a) q1 = 20 , q2 = 80 µC , 1 mJ , (b) q′1 = 12 , q′2 = 48 µC ,
0.36 mJ .]

17.3 Dielectrics

17.16 Para�n is used to �ll the volume of a parallel-plate
capacitor whose plates have 5 cm2 in surface area and 2 mm
in distance between them. (a) What is the capacitance of
the capacitor? (b) What is the maximum operating voltage?
(Refer to the table on Page 293 for the dielectric constant and
strength of para�n.) [A: (a) 4.9 pF , (b) 20 kV .]

17.17 There is a distance of 3 mm between the plates of a
parallel-plate capacitor. Its capacitance is C0 = 5 µF when
there is vacuum between the plates.
(a) The capacitor is connected to a battery with V0 = 24 V .
What will the charge Q0 and the electric �eld E0 between
the plates be?
(b) The capacitor is disconnected as charged and a dielectric
layer with dielectric constant κ = 8 is inserted between the
plates. Find the capacitance C , potential V and electric �eld
E of the capacitor.
(c) The same dielectric layer is inserted between the plates
while the capacitor is connected to the battery. Find the
charge Q , potential V and electric �eld E of the capacitor.
[A: (a) 120 µC and 8 kV/m , (b) 40 µF , 3 V and 1 kV/m , (c)
960 µC , V and E do not change.]

Problem 17.18
17.18 The parallel-plate capacitor shown in the �gure above
has capacitance C0 when the space between the plates is
empty. A dielectric with constant κ is inserted that �lls one
half of the vacuum between the plates. What will the new
capacitance be? [A: C = (1 + κ)C0/2 .]

17.19 The 5 mm wide space between the plates of a parallel-
plate capacitor is �lled with air. (a) What is the maximum
operating voltage? (b) A paper layer is inserted between the
plates of the capacitor. What is the maximum operating volt-
age this time? (Dielectric strengths: Air: Emax = 3×106 V/m ,
paper: 15 × 106 V/m ) [A: (a) 15 kV , (b) 75 kV .]

17.20 A parallel-plate capacitor is to be manufactured with
a material with a dielectric constant of 12 and a dielectric
strength of 5 × 106 V/m such that its capacitance shall be
10 pF and it will be able to operate up to 20 kV of potential
di�erence. What should the surface area and distance be-
tween the plates of this capacitor be?

[A: 3.8 cm2 and 4 mm .]

?



18
CURRENT, RESISTANCE

AND CIRCUITS

The Intel Core i7 chip and the
underlying Sandy Bridge archi-
tecture. Launched in 2011, this
chip contains 2.6 billion transis-
tor circuits.

No other type of power more e�cient and practical than electric power has
been discovered in modern technology and industry. Electricity can easily be
transferred and used in all places and under all operating conditions. It can also
be used in sending signals and in operating and controlling machinery.

The electric current lies at the basis of all of these activities. From this chapter
onwards, we shall leave the subject of electrostatics and examine the currents
produced by moving electric charges and their behavior in matter. We will learn
of electrical e�ects that are much richer and more complex compared to static
charges.

18.1 ELECTRIC CURRENT

The amount of charge �owing through a conductor in a given time is called
the current. More explicitly, if a net charge dq �ows through the cross-section
of a conductor in a certain direction during a small time dt , then the current,
indicated with the symbol I , is

Figure 18.1: Charges �owing
through a cross-section.I =

dq
dt

(Current) (18.1)
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The unit of current is the ampere and is indicated with A :

1 A = 1 C/s

However, as the ampere is the basic unit in the SI system, it is not necessary
to express ampere in terms of coulombs. On the contrary, the coulomb unit is
ampere×seconds.

Note the expression “net charge �owing through in a certain direction” here.
The free electrons in a conductor are continually in motion. When observed in
any cross-section, the average amount of charge �owing through in one direction
is equal to the average amount of charge �owing in the other direction, and
therefore the net charge �owing through is zero. A net charge �ow is observed
in a certain direction when this conductor is connected to a potential di�erence.
Direction of Current

Before the microscopic structure of matter was known, the direction of electric
current was accepted as the direction of motion of positive charges. However, it
was later understood that only the negative electrons were moving. Positively
charged ions do not move; they only vibrate, as they are strongly bonded to each
other and are very heavy.

Figure 18.2: Current is formed
by (−) charged electrons, and +

charged ions do not move.

Despite this, the direction of current was not changed. According to this
assumption, the direction of current is taken as the direction of motion of positive
charges. In actual fact, in a solid medium these are negatively charged electrons
moving in the opposite direction.

This creates no problem macroscopically. Consider this: A +q charge travel-
ing to the right increases the charge on the right by +q . However, a −q charge
traveling to the left also increases the charge on the right by +q . They both lead
to the same result. In this chapter, we will examine many cases as if +q charges
are moving, but the conclusions that we shall reach will not change.
Drift Speed

We can calculate the current in a conducting wire in terms of the speed of
the moving charges inside of the wire. A net electric �eld E will form inside
of a wire when a potential di�erence V is applied between the two ends of the
wire. The charges will start to accelerate as a force F=qE will be exerted upon a
charge q in the electric �eld.

(Let us make one correction here: We had previously stated that E=0 was
always true in a conductor in electrostatics. However, the conditions of elec-
trostatics are not valid any more, as we are examining moving charges and the
electric �eld may be di�erent from zero.)

Charges under the force F = qE would be expected to accelerate according to
Newton’s law. However, this is not possible in a conducting medium (Figure 18.3).
This is because moving q charges collide with the ions in the medium and lose
energy or change direction. They then accelerate again and repeatedly collide

Figure 18.3: Electrons lose
energy by colliding with ions
when accelerating in a conduc-
tor.

and slow down. You may consider this like an automobile trying to drive along a
road with successive red tra�c lights. The automobile accelerates, but halts at a
red tra�c light and waits; it then starts to accelerate again after a green tra�c
light and is then forced to stop again at the next red tra�c light.

Electrons thus travel at an average speed inside of a conductor. This is called
the drift speed and is indicated with vd . Now, let us show the relation between
drift speed and current.
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Let ∆q be the amount of charge �owing through the cross-section A of a
conductor during the time interval ∆t (Figure 18.4). The individual charges e
�owing through each with drift speed vd during this ∆t time interval will be
those charges inside of a cylinder with base area A and length L=vd ∆t . Let
the number of free charges inside of a unit volume of the conductor medium be
n=N/V . Accordingly, if the number of e charges inside of the mentioned cylinder
is ∆N , then

Figure 18.4: Charges �owing
through the cross-section A dur-
ing time interval ∆t , are located
inside of a cylinder with length
vd ∆t .

∆N = n × volume = n Avd ∆t

and the amount of charge �owing through the cross-section is

∆q = e ∆N = qnAvd ∆t

If we now use the de�nition of current, we �nd the following result:

I =
∆q
∆t

= enAvd (18.2)

If current I is known, we can write this expression for speed vd as follows:

vd =
I

enA
(drift speed) (18.3)

Let us see the order of magnitude of drift speed using a simple calculation: A
current I = 20 A is �owing through a copper wire with cross-section 1 mm2 .
The copper contains approximately 1029 free electrons per cubic meters. If we
take q=e=1.6 × 10−19 C as the charge, we �nd that

vd =
I

enA
=

20
1.6 × 10−19 × 1029 × 10−6 ≈ 0.001 m/s

This result may seem surprising. Electrons are moving as slow as 1 mm per
second inside the conductor. However, we see a lamp turn on immediately after
we switch it on. The reason for this is that there are free electrons everywhere in
the conductor. The neighboring charges of the lamp start to move as soon as you
switch it on and do not have to travel a long distance.
Biological Effects of Electric Current

The human body has limited resistance to electric voltage and current. The
e�ect called electric shock occurs at currents and potential di�erences above
certain limits and may lead to serious injuries that may result in death. Let us
emphasize the important points to keep in mind for protection from electricity.
• Electric current can �ow through the body in two ways: It may �ow through

by completing the circuit over the body, as shown in Figure 18.5a. Or by
reaching the ground through the body, as shown in (b).

Figure 18.5: Current can �ow
through the body in two ways:
(a) By completing the circuit, (b)
By reaching the ground through
the body.

• The important factor in electric shock is not the voltage but current. You may
come into contact with a very high voltage, but it will not harm the body if a
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current does not �ow as a result. However, if the high voltage completes the
circuit at another point of the body (for example, if two wires are held with
two hands or a conducting contact is made with the ground), then the circuit
is completed and current starts to �ow. (This is why birds are able to land on
electric cables without getting electrocuted.)

• Direct currents higher than 0.3 − 0.5 A and alternating currents higher than
60 milliampere are harmful.

• Electric current can harm the body in two ways:
Burns on the skin and internal organs. The heat energy released

and the ionization that occurs along the current path may damage tissues
and lead to death.

Disruption of the heart and the nervous system. The nervous sys-
tem of our body consists of nerve cells called axons that operate with voltages
as small as 0.1 V . An external electric current disrupts this system and leads
to paralysis in muscles. The heart beat becomes irregular, especially in the
event of a paralysis in the heart ventricles. This is called �brillation. The
heart may stop as a result of being unable to pump su�cient blood.
80 % of the deaths caused by electric shock are due to burns and the rest due
to heart and nervous system paralysis.

Figure 18.6: The de�brillator
device used in cardiac arrest.

• The current �owing through the body depends on the electric resistance of
the body (see Ohm’s law below). This resistance may vary depending on
skin temperature or whether it is moist or dry. The resistance of a dry skin is
around 5 000 − 10 000 Ω but it may drop down to around 1 000 Ω for moist
skin.

• Considering these current and resistance limits, even voltages as low as 10 V
may be harmful.

• Protection. The �rst rule to be observed in the event of an electric shock
is to cut the contact with the voltage source. You must make sure to isolate
yourself while doing this.
Using three-prong plugs with ground connection will provide the necessary
protection for electric appliances with current leaks. One of the three wires in
these plugs carries the voltage and the other two are neutral. The third wire
is connected both to the ground and to the conductor frame of the electrical
appliance. Any electrical leak thus goes to the ground through this third
path.
Another protection method is to prevent currents �owing to the ground
through the body by wearing shoes with insulating soles (rubber, cork).

18.2 OHM’S LAW AND RESISTANCE

The current �owing through a unit cross-section of a conductor is called
the current density and is indicated with J . If a current I �ows through a
cross-sectional area A , the current density will be

J =
I
A

(Current density) (18.4)

Its unit is ampere/meter2 = A/m2 .
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There is a linear relation between the current density J and the electric �eld
E in the medium in metals and many other conductors. Discovered for the �rst
time by the German scientist Ohm, this relation is known as Ohm’s law and is
expressed as follows:

E = ρJ (microscopic Ohm’s law) (18.5)

The ratio ρ is called the resistivity.
Resistivity depends on the type of material and temperature. The following

table lists the resistivities of some materials:

Resistivities of some materials at room temperature (20 ◦C)
Material Resistivity ρ (Ω·m) Temperature coe�cient α (1/C◦)

Silver 1.5 × 10−8 0.004
Copper 1.7 × 10−8 0.004
Gold 2.4 × 10−8 0.003
Aluminum 2.8 × 10−8 0.004
Tungsten 5.3 × 10−8 0.005
Carbon 3.5 × 10−5 −0.001

Eq. (18.5) is an expression of Ohm’s law at the microscopic level. In order to
turn this into a form that is usable in practical applications, we use the potential
di�erence V applied on both ends of the conductor (Figure 18.7). The electric
�eld inside of a conducting wire with cross-section A and length L is

E =
V
L

and, using current density J = I/A , the law (18.5) becomes as follows:
Figure 18.7: Ohm’s law.V

L
= ρ

I
A

−→ V =

(
ρ

L
A

)
I

From here, we obtain the macroscopic expression of Ohm’s law:

V = R I (macroscopic Ohm’s law) (18.6)

The coe�cient R in this law is called the resistance:

R = ρ
L
A

(resistance) (18.7)

The resistance of a conductor depends on its type, dimensions and temperature.
The resistance of a conductor increases with its length and decreases with its
cross-sectional area.

The unit of resistance is the ohm and is indicated with the Ω (omega) symbol:

1 Ω = 1
V
A

When the resistance is used as a circuit element, it is called a resistor and is
indicated with the symbol or .
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Variation of Resistivity with Temperature
The resistivity of a conductor increases with temperature and makes current

�ow more di�cult. Microscopically, the vibration of positive ions usually increases
with temperature; the ions then collide more frequently with the free electrons in
the medium, and thus reduce their drift speed. This, in turn, causes an increase
in the resistance of the medium.

Experimental observations show that the variation of resistivity with temper-
ature can be expressed as follows:

ρ = ρ0 [1 + α (T − T0)] (18.8)

The value ρ0 here is the resistivity at a reference temperature T0 (usually 0 ◦C
or 20 ◦C ). The coe�cient α is called the temperature coe�cient of resistivity.
The values of α for some materials are given in the table on page 305.

The relation of resistance R to temperature is similar:

R = R0 [1 + α (T − T0)] (18.9)

Example 18.1

A 5 Ω resistor is to be made using a copper wire with a 0.1 mm2

cross-section.
(a) What should the length of the wire be?
(b) How many amperes of current will �ow when this resistor

is connected to a potential di�erence of 116 V?
(c) What will the magnitude of the electric �eld inside of the

wire be?

Answer
(a) We use Eq. (18.7), which de�nes the resistance:

R = ρ
L
A
→ L =

RA
ρ

We �nd the resistivity of copper from the table on Page 305
and calculate the required length:

L =
5 × 0.1 × 10−6

1.7 × 10−8 = 29 m

(b) Eq. (18.6) is solved for the current:

I =
V
R

=
116
5

= 23 A

(c) Assuming that there is uniform electric �eld inside of the
wire, we write the potential di�erence in terms of electric
�eld:

V = E L → E =
V
L

=
116
29

= 4 V/m

Example 18.2

An electric �eld with a magnitude of 100 V/m is formed when
a 3 A current �ows through a wire with cross-section 2 mm2 .
What is the resistivity of the wire?

Answer
We write Eq. (18.5), the microscopic expression of Ohm’s law:

E = ρJ
J = I/A is the current �owing through the unit cross-section.
From here we calculate the resistivity:

E = ρ
I
A
→ ρ =

EA
I

We substitute the data and calculate the resistivity:
ρ = 100 × 2 × 10−6/3 = 6.7 × 10−5 Ω·m

Example 18.3

A tungsten wire lamp has 10 Ω in resistance at 20 ◦C .
(a) What will its resistance be at 600 ◦C?
(b) The lamp has 80 Ω in resistance when it is glowing. De-

termine the temperature of the lamp.

Answer
(a) Eq. (18.9) is used:

R = R0 [1 + α (T − T0)]
We �nd the temperature coe�cient of tungsten from the table
on Page 305:

R = 10 [1 + 0.005 × (600 − 20)] = R = 39 Ω

(b) The same formula is used to �nd temperature T :
80 = 10 [1 + 0.005 × (T − 20)]
T = 1420 ◦C
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18.3 DIRECT CURRENT CIRCUITS

Electromotive Force (EMF)
There must be a potential di�erence between the two points of a circuit for

a current to �ow through it. A potential di�erence obtained from other sources
(chemical, mechanical, magnetic, optical, etc.) is called the electromotive force.
It is called emf for short and is indicated with the E symbol.

Emf is not actually a force, but a potential di�erence, however this name has
stuck for historical reasons. The emf potential di�erence is actually indicated
with E rather than V , to indicate that it is a source.

Figure 18.8: Various sources of
emf: bicycle dynamos, dry batter-
ies, solar batteries.

As a circuit component, emf is indicated with the symbol .
The most common source of emf is the battery that converts chemical energy

into electrical energy. For example, in a galvanic battery, a potential di�erence is
produced between two di�erent metal electrodes (zinc and copper) immersed in
an electrolyte liquid. Lead and lead-oxide electrodes are used in car batteries.

In all types of battery, one of the metal electrodes will have higher potential
(Figure 18.9). This positive terminal is called the cathode and the negative terminal
the anode. When this battery is connected to a circuit, the current �ows from the

Figure 18.9: In a battery, cur-
rent �ows from cathode (+) to
anode (–), but electrons actually
�ow in the reverse direction.

cathode to the anode, in other words, from the positive terminal to the negative
terminal. The current inside of the battery �ows in the reverse direction to
complete the cycle. (As we mentioned earlier, electrons actually �ow in the
opposite direction.)

Likewise, solar batteries convert solar energy directly into a potential di�er-
ence, just as a generator converts mechanical energy into electrical energy.

The emf value, in other words, the potential di�erence E of the battery, is
constant and does not vary, even if you increase the dimensions of the battery.
The emf value can only be increased by connecting several batteries in series. For
example, emf is 1.1 V in a galvanic battery, 2.1 V in a lead battery, and 12 V in
an automobile battery with 6 cells.
Internal Resistance and Terminal Voltage

When an emf source is connected to a circuit, while current �ows from the
(+) terminal to the (–) terminal on the outside, there must be a current from
the (− ) terminal to the (+) terminal inside of the electrolyte liquid. An internal
resistance appears, as the mobility of the electrons inside of the liquid will be
limited. Internal resistance is indicated with r .

Now, let us consider a very simple circuit by connecting the emf source E

to a resistor R . In the circuit, it is necessary to add an internal resistance r
for the battery in addition to the resistor R . A current I starting from the (+)
terminal (point b ) with high potential will circulate throughout the whole circuit
(Figure 18.10).
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Figure 18.10: A simple circuit
consisting of a resistance R con-
nected to an emf source E with
internal resistance r .

To calculate this circuit, let us start from the (–) terminal of the battery
indicated with a , go along the circuit in the direction of the current and return to
point a . The potential should return to the value Va again at the end of this path.

Let the potential at point a be Va . Since we have to go through the (+)
terminal of the emf source to reach point b , the potential will increase and the
potential of point b will be higher by +E :

Vb = Va + E

When we reach the internal resistance r , according to Ohm’s law, the potential
will drop by rI when going along the resistor in the direction of the current.
Therefore, the potential of point c is

Vc = Vb − r I = Va + E − r I

Likewise, the potential will drop by RI when going from point c through the
resistor R in the direction of the current. Therefore, the potential of point a on
the right will be

Va = Vc − R I = Va + E − r I − R I

We thus return to point a . The graph in Figure 18.11 shows the potential value at
each point along the circuit.

Figure 18.11: The potential dif-
ferences on a circuit as current
�ows through the emf and the
resistors.

By simplifying, we get
E − r I − R I = 0

We thus �nd the current I in a circuit with resistor R by an emf source E with
internal resistance r :

I =
E

R + r
As this circuit operates with the current I �owing, the resistor R will be

subject to the potential di�erence between the ac terminals of the battery. And
this potential di�erence will be,

Vac = E − rI (Terminal voltage) (18.10)

This potential di�erence Vac is called the terminal voltage of the battery. Ter-
minal voltage will always be less than the value of E , because the potential drop
across the internal resistor r should also be taken into account.
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Power and Energy in Electric Circuits
Electric circuit components (resistors, capacitors, motors. . . ) convert electrical

energy into other types of energy, such as heat, light and motion, when a current
�ows through them. In the most general case, if a current I �ows through a
circuit component connected between any two points, there will be a potential
di�erence V between its terminals. The potential di�erence shows the change in
the potential energy, i.e., the work performed per unit charge.

Let us suppose that charge dq �ows during time interval dt through a circuit
component with potential di�erence V between its terminals. The change in the
potential energy of this charge will be dU = dq V according to the de�nition
of potential energy. In other words, the potential energy lost when the charge
dq goes from a high potential to a low potential point on this circuit element,
performs dW = dU = dq V amount of work on this circuit component:

dW = dU = V dq

The work performed per unit time gives us the power:

P =
dW
dt

=
V dq

dt
= V

dq
dt

As the amount of charge �owing during the unit time is I = dq/dt , the expression
for power will be as follows:

P = V I (Power) (18.11)

This formula is the most general expression of power, and it gives us the power
Figure 18.12: Electric energy is
converted to heat in an electric
heater.

consumed when the potential di�erence is V and the current �owing through is
I on any component of the circuit, including resistors, capacitors, emf, motors,
etc.

To �nd the energy spent during a certain time interval, we write the de�nition
of power for dW :

dW = P dt

As a particular case, let us �nd the expression for the power consumed in a
resistor: As V = R I according to Ohm’s law, we get

P = V I = R I2 (Power converted into heat in a resistor) (18.12)

or, alternately, the amount of energy consumed during time interval dt will be

dW = P dt = R I2 dt (18.13)

Note that this energy converted into heat is proportional to the square of the
current.

Example 18.4

A 15 V battery is connected to a 7 Ω resistor. The internal
resistance of the battery is 0.5 Ω .
(a) Find the current �owing through the circuit.
(b) Find the terminal voltage of the battery.

(c) Calculate the power consumed in the resistors and the
power provided by the battery to the circuit.

Answer
(a) We add the voltage changes over each circuit component
as we make a complete clockwise cycle starting from the
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negative terminal of the battery:
+E − r I − R I = 0

I =
E

R + r
=

15
7 + 0.5

= 2 A

(b) The terminal voltage of the battery is de�ned in Eq. (18.10):
Vab = E − rI = 15 − 0.5 × 2 = 14 V

(c) We use the formula RI2 to calculate the power consumed
in the resistors:
PR = RI2 = 7× 22 = 28 W and Pr = rI2 = 0.5× 22 = 2 W
The power provided by the battery is calculated using the
formula (18.11):

P = V I = E I = 15 × 2 = 30 W

Example 18.5

An electric kettle made of tungsten has 50 Ω in resistance at
room temperature (20 ◦C ) and operates under 240 V .
(a) How much power does the kettle consume when it starts

to heat water at 20 ◦C?
(b) How much power does it consume when the water starts

to boil?

Answer
(a) Using the power formula P=VI and Ohm’s law V=RI ,
the power of the heater can be written as follows:

P = R I2 = V2/R

We calculate the power by using the resistance at room tem-
perature:

P = 2402/50 = 1200 W = 1.2 kW

(b) As the boiling point of water is 100 ◦C , we have to calcu-
late the resistance at that temperature:

R = R0 [1 + α (T − T0)]
We take the temperature coe�cient α of tungsten from the
table on page 305:

R = 50 [1 + 0.005 × (100 − 20)] = 70 Ω

We calculate the power consumed at this temperature:

P =
V2

R
=

2402

70
= 820 W = 0.82 kW

18.4 COMBINATION OF RESISTORS

A single resistor that performs the function of multiple resistors in a circuit
is called an equivalent resistor. Very complex connections usually require
advance circuit analysis. We shall only discuss circuits consisting of resistances
connected in series and parallel.

Two simple principles are su�cient in circuit solutions:
• The same current �ows through resistors on the same branch.
• The same voltage applies to resistors connected to the same two terminals.

Resistors in Series
Suppose that resistors R1 and R2 are connected in series under a potential

di�erence V , as shown in Figure 18.13. The same current I will �ow through
these resistors. Therefore, we write the potential di�erences and Ohm’s law:

Vac = Vab + Vbc

V = R1I + R2I

The equivalent resistor Req should draw the same current I under the same
Figure 18.13: Resistors in se-
ries.

potential di�erence V :
V = Req I

Comparing the last two expressions, we �nd the series connected equivalent
resistor:

Req = R1 + R2

This result is also valid for more than two resistors:

Req = R1 + R2 + · · · + RN (Resistors in series) (18.14)



18.4. COMBINATION OF RESISTORS 311

Resistors in Parallel
Two resistors with resistance R1 and R2 are connected to the same battery

with potential di�erence V , as shown in Figure 18.14. In this case, each resistor
will be subject to the same V potential di�erence, but the current �owing through
each will be di�erent. If we use I1 and I2 to indicate these currents, we get

I1 =
V
R1

I2 =
V
R2

The total current drawn from the battery will thus be I = I1 + I2 .
Figure 18.14: Resistors in par-
allel.

The equivalent resistor placed between the same terminals should draw the
same total current:

I = I1 + I2

V
Req

=
V
R1

+
V
R2

After simplifying, we get the equivalent resistance of resistors in parallel:

1
Req

=
1

R1
+

1
R2

This result is valid for more than two resistors in parallel:

1
Req

=
1

R1
+

1
R2

+ · · · +
1

RN
(Resistors in parallel) (18.15)

The equivalent resistance of a parallel connection is less than each resistance.

Example 18.6

In the �gure, we have R1=1 , R2=2 , R3=3 , R4=4 and R5=5 Ω .
(a) What is the equivalent resistance between ab?
(b) How much current will �ow through resistor R4 when the

terminals ab are connected to a 12 V source?

Answer
(a) The resistance of wires is taken to be zero in circuit prob-
lems. In other words, we can extend, shorten or even merge
these wires at one point. It thus becomes easy to see series
or parallel connections.

If we examine the circuit in the �gure starting from the
inside, we can observe that R1 and R5 are connected in series.
Let us use R′ to show their equivalent resistor:

R′ = R1 + R5 = 1 + 5 = 6 Ω

If we replace these two resistors with a single resistor R′ , it
will be observed to be in parallel connection with R3 . Let us

calculate the equivalent resistance of these two:

R′′ =
R3R′

R3 + R′
=

3 × 6
3 + 6

= 2 Ω

This resistor R′′ will be in series connection with R4 :
R′′′ = R4 + R′′ = 4 + 2 = 6 Ω

Finally, resistor R′′′ will be in parallel connection with R2 :

Req =
R2R′′′

R2 + R′′′
=

2 × 6
2 + 6

= 1.5 Ω

(b) We �rst calculate the current drawn by the equivalent
resistor when the terminals ab are connected to the battery:

I =
Vab

Req
=

12
1.5

= 8 A

Let us assume that this current I enters through the terminal
b . The current will separate here into two branches, which
we will indicate with I2 and I4 :

I = I2 + I4 = 8 A
We can immediately calculate the current I2 using Ohm’s
law, because the resistor R2 is also subject to the potential
di�erence Vab = 12 V :

I2 =
Vab

R2
=

12
2

= 6 A

From here we calculate the current I4 :
I4 = I − I2 = 8 − 6 = 2 A
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Example 18.7

In the circuit shown in the �gure, R1=1 , R2=2 , R3=3 and
R4=4 . The terminals ab are connected to a 12 V source.
(a) Calculate the equivalent resistor and the power consumed

in the circuit when the switch S is open.
(b) Calculate the equivalent resistor and the power consumed

in the circuit when the switch S is closed and compare
with item (a).

Answer
(a) The pairs (R1,R4) and (R2,R3) are in series connection
with each other when the switch is open. Let us use R′ and
R′′ to indicate their equivalent resistances:

R′ = R1 + R4 = 1 + 4 = 5 Ω

R′′ = R2 + R3 = 2 + 3 = 5 Ω

Then, these resistors R′,R′′ will be in parallel connection:

Req =
R′R′′

R′ + R′′
=

5 × 5
5 + 5

= 2.5 Ω

We calculate the power consumed in the circuit from the
potential di�erence:

P =
V2

ab

Req
=

122

2.5
= 58 W .

(b) The pairs (R1,R3) and (R2,R4) will be in parallel when
the switch is closed. Let us use R′ and R′′ to indicate their
equivalent resistances:

R′ =
R1R3

R1 + R3
=

1 × 3
1 + 3

=
3
4

Ω

R′′ =
R2R4

R2 + R4
=

2 × 4
2 + 4

=
4
3

Ω

Then, these resistors R′,R′′ will be in series:
Req = R′ + R′′ =

3
4

+
4
3

=
25
12

= 2.1 Ω

We calculate the power consumed in the circuit from the
potential di�erence:

P =
V2

ab

Req
=

122

2.1
= 69 W .

The power consumed in the circuit is higher when the switch
is closed.

Example 18.8

In the circuit shown in the �gure, R1=1 , R2=2 , . . . and
R6=6 Ω . Find the equivalent resistance between points ab .

Answer In circuit problems, it is convenient to consider that

a potential di�erence is applied across the points between
which equivalent resistance is requested. The circuit simpli-
�es as shown above if we change the lengths of the connecting
wires and merge them at one point.
It is easily seen from the �gure that the resistors R3 and
R6 are connected in parallel. We calculate the equivalent
resistance of these two as follows:

R′ =
R3R6

R1 + R3
=

3 × 6
3 + 6

= 2 Ω

This resistor R′ will be in series with R4 :
R′′ = R4 + R′ = 4 + 2 = 6 Ω

This resistor R′′ will be in parallel with R2 :

R′′′ =
R2R′′

R2 + R′′
=

2 × 6
2 + 6

= 1.5 Ω

This resistor R′′′ will be in series with R1 :
Riv = R1 + R′′′ = 1 + 1.5 = 2.5 Ω

Finally, this resistor Riv will be in parallel with R5 :

Req =
R5Riv

R5 + Riv =
5 × 2.5
5 + 2.5

=
5
3

= 1.7 Ω

18.5 ELECTRICAL MEASURING INSTRUMENTS

It is important to know how to connect electrical measuring instruments
that measure resistance, current or emf. An instrument that measures current is
called an ammeter, an instrument that measures potential di�erence is called a
voltmeter and an instrument that measures emf is called a potentiometer.

The common aspect of all these measuring instruments is that they use the
same instrument, called the galvanometer in di�erent ways. So, let us �rst
examine the galvanometer.
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Galvanometer
When a current �ows through a wire placed between the poles of a magnet, a

magnetic force acts on the wire (Figure 18.15). As we shall discuss in Chapter 20,
the magnetic force on the wire is proportional to the magnitude of the current.
Also, a torque is exerted if the wire is wound like a coil and the coil gets de�ected in
the magnetic �eld. Likewise, the amount of de�ection of the wire is proportional
to the current �owing through it. Thus, the current can be calculated by measuring
the de�ection angle on a scale.

However, the wire inside of the galvanometer also has a resistance. This
resistance is part of the circuit, and will thus change the current �owing through
the circuit. The internal resistance of the galvanometer should be very small so that
this e�ect can be small.

Figure 18.15: Galvanometer.The galvanometer is the basis of all kinds of electrical measuring instruments.
Other quantities can be measured by connecting resistors in series or in parallel
to the galvanometer.
Ammeter

The ammeter used to measure current is actually a galvanometer with a very
small resistor. The ammeter is connected in series by inserting it into the branch
in which the current is to be measured. It is thus ensured that the whole current to
be measured �ows through the ammeter. However, the resistance of the ammeter
should be very small, almost zero, such that the current �owing through this
branch is not a�ected. The current �owing through the ammeter in the circuit
shown in Figure 18.16 will be

Figure 18.16: An ammeter is
connected in series.I =

E

R + RA

The change in the current I can be neglected if the resistance of the ammeter is
RA � R .
Voltmeter

The voltmeter used to measure the potential di�erence between two points is
actually a galvanometer with very large resistance. The voltmeter is connected in
parallel to points a, b of the circuit, and is thus subject to the potential di�erence
to be measured (Figure 18.17).

Figure 18.17: A voltmeter is
connected in parallel.

This time, some of the current will �ow through the voltmeter and the current
�owing through the resistor R will decrease. We calculate the potential di�erence
on resistor R :

V =
RI

1 + R/RV

Therefore, the resistance RV of the voltmeter should be very large to ensure that
the potential di�erence does not deviate too much from its correct value RI .
Potentiometer

A potentiometer is an instrument used to measure the emf voltage of a battery.
As we have seen previously in Eq. (18.10), when a battery connected to the circuit
starts to produce a current, the terminal voltage will be Vab = E − rI and will be
less than E . Since we cannot eliminate the internal resistance r of the battery,
can we take a measurement at zero current?

We can do this with the potentiometer assembly shown in Figure 18.18. The
�gure shows a battery with a known value of E and a resistor R . The emf source
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whose Ex value is to be measured is connected between point b and a variable
point c on the resistor R .

Figure 18.18: Potentiometer.

The point c is varied such that a point is found where the current Ix �owing
through Ex becomes zero. This is possible when Ex and E are connected in
reverse and E > Ex .

We calculate the same potential di�erence Vcb at two branches at this zero
condition as follows:

Vcb = Rcb I (Rbc part of resistor R)
Vcb = Ex (because Ix = 0)

Therefore, the desired Ex is equal to the product Rbc I . Ex can be calculated by
measuring the current �owing through the circuit and the resistance Rbc .

Today, current, voltage and resistance can all be measured using instruments
called the multimeter or the avometer, which have all these properties in a
digital medium. However, their operating principle is the same.

Figure 18.19: Multimeter.

Multiple-choice Questions

1. What will the current be if a charge of 6 C �ows through
the cross-section of a wire in 2 seconds?
(a) 6 A (b) 8 A (c) 3 A (d) 1/3 A

2. Which of the following are correct for electric current?
I. Electrons perform accelerated motion in conductors.

II. Electrons collide with ions in the conductor and slow
down.
III. Electrons travel at a constant average speed due to

collisions.
(a) I & II (b) II & III (c) I & III (d) I, II&III

3. Which of the following is correct for the current in con-
ductors?

(a) Positive ions move in the direction of the current.
(b) Positive ions move in the opposite direction of the
current.
(c) Electrons move in the direction of the current.
(d) Electrons move in the opposite direction of the cur-
rent.

4. Which of the following are correct for electromotive
force (emf)?

I. It converts another type of power into electrical
power.
II. It is an electrical force.
III. It provides a constant current to the circuit.
IV. It provides a constant potential di�erence to the cir-
cuit.

(a) I & II (b) I & III (c) I & IV (d) II & III

5. Which of the following are correct for the biological
e�ects of electricity?
I. It is dangerous to complete a circuit through the body.
II. It is dangerous for a current the reach the ground

through the body.
III. There will be no harm if the voltage is high but no
current passes through.
IV. Voltages higher than 10 V can be dangerous.
(a) I & II (b) II & III (c) I & IV (d) All

6. Which of the following are correct for the resistance of
a wire?
I. Resistance increases with temperature.

II. Resistance decreases with temperature.
III. Resistance increases with the cross-section area.
IV. Resistance decreases with the cross-section area.
(a) I & III (b) I & IV (c) II & III (d) II & IV

7. Both the length and the cross-section area of a wire are
doubled. By what factor will its resistance increase?

(a) No change (b) 2 (c) 4 (d) 8

8. Which is the expression for Ohm’s law?
(a) V = RI (b) I = VR (c) V = R/I (d) I = R/V
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9. Which of the following are correct for the resistance of
a conductor?

I. It is proportional to the resistivity.
II. It is proportional to the length.

III. It is proportional to the cross-section area.
IV. It is inversely proportional to the cross-section area.
(a) I & II (b) I, II & IV (c) I & III (d) II & IV

10. Which of the following will be correct when a 12 V emf
source with an internal resistance of 1 Ω is connected
to a circuit?
I. It will provide a constant 12 V potential di�erence

to the circuit.
II. It will provide a potential di�erence less than 12 V

to the circuit.
III. It will provide a constant current to the circuit.
(a) I & II (b) II & III (c) I & III (d) All

11. When you go along the current through a resistor R in
which a current I is �owing, which of following hap-
pens?

(a) The potential increases by RI.
(b) The potential decreases by RI.
(c) The potential remains constant.
(d) The potential increases by RI2.

12. Which two of the following principles are correct for
direct current circuits?
I. The same current �ows through resistors on the same

branch.
II. The potential di�erence is the same in resistors on

the same branch.
III. The same current �ows through resistors connected
between the same two points.
IV. The potential di�erence in resistors connected be-
tween the same two points is the same.
(a) I & II (b) II & III (c) I & III (d) I & IV

13. A 12 V emf source delivers 3 A when connected to a
circuit. What is the power provided by the source?
(a) 4 W (b) 15 W (c) 36 W (d) 108 W

14. How much energy does a light bulb with 5 W of power
consume in 1 minute?
(a) 5 J (b) 10 J (c) 25 J (d) 300 J

15. How much power is consumed in a 3 Ω resistor through
which 2 A in current �ows?
(a) 5 W (b) 6 W (c) 12 W (d) 18 W

16. What is the equivalent resistance of the resistors with
resistances of 3 and 6 Ω connected in series?
(a) 2 Ω (b) 9 Ω (c) 18 Ω (d) 24 Ω

17. What is the equivalent resistance of the resistors with
resistances of 3 and 6 Ω connected in parallel?
(a) 2 Ω (b) 9 Ω (c) 18 Ω (d) 24 Ω

18. What is the equivalent resistance between ab in the
�gure?

(a) 2 Ω (b) 3 Ω (c) 6 Ω (d) 9 Ω

19. Which of the following are correct for an ammeter?
I. It is connected to the circuit in series.
II. It is connected to the circuit in parallel.

III. It has very low internal resistance.
IV. It has very high internal resistance.
(a) I & II (b) I & III (c) II & III (d) II & IV

20. Which of the following are correct for a voltmeter?
I. It is connected to the circuit in series.
II. It is connected to the circuit in parallel.

III. It has very low internal resistance.
IV. It has very high internal resistance.
(a) I & II (b) I & III (c) II & III (d) II & IV
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Problems

18.2 Ohm’s Law and Resistance
(Use the table on Page 305 for the resistivities and temperature
coe�cients that may be required in the problems.)

18.1 A 3 Ω resistor is to be made using an aluminum wire
with a cross-section of 0.2 mm2 . (a) What should the length
of the wire be? (b) How many amperes of current will �ow
when this resistor is connected to a potential di�erence of
60 V? (c) What will the magnitude of the electric �eld inside
of the wire be? [A: (a) 21 m , (b) 20 A , (c) 2.8 V/m .]

18.2 How much current passes through when a tungsten
wire with a cross-section area of 1 mm2 and a length of 10 m
is connected to a 12 V battery? [A: 23 A .]

18.3 A wire with a resistance of 0.02 Ω is to be manufac-
tured out of an aluminum block with a volume of 1 cm3 .
What should the length and cross-section area of the wire
be? [A: 85 cm and 1.2 mm2 .]

18.4 A wire with resistance R is cut into 4 equal parts and
joined side-by-side. What will the resistance of the new wire
be in terms of R? [A: R/16 .]

18.5 An electric �eld with a magnitude of 80 V/m exists
inside of a wire with a cross-section of 3 mm2 when a 5 A
current �ows through. What is the resistivity of the wire?

[A: 4.8 × 10−5 Ω·m .]

18.6 A tungsten wire lamp has 7 Ω in resistance at 20 ◦C .
(a) What will its resistance be at 500 ◦C? (b) The lamp has
50 Ω in resistance when it is producing light. Determine the
temperature of the lamp. [A: (a) 24 Ω , (b) 1250 ◦C .]

18.7 At what temperature will the resistivity of tungsten be
four times that of silver? [A: 300 ◦C .]

18.3 Direct Current Circuits

18.8 An 18 V battery is connected to a 8 Ω resistor. The
internal resistance of the battery is 1 Ω . (a) Find the current
�owing through the circuit. (b) Find the terminal voltage of
the battery. (c) Calculate the power spent on the resistors and
the power provided by the battery to the circuit.

[A: (a) 2 A , (b) 16 V , (c) 32 , 4 and 36 W .]

18.9 When a battery with an emf of 12 V is connected to a
circuit, a 5 A current �ows out and the terminal voltage is
11 V . What are the internal resistance of the battery and the
connected resistance? [A: 0.2 Ω and 2.2 Ω .]

18.10 An oven heater made of tungsten has a resistance of
40 Ω at room temperature (20 ◦C ) and operates under 240 V .
(a) How much power does the oven consume when it starts
to cook food at 20 ◦C? (b) How much power does the oven

consume when its temperature reaches 300 ◦C?
[A: (a) 1440 W , (b) 600 W .]

18.4 Combination of Resistors

Problem 18.11
18.11 Calculate the equivalent resistance between the termi-
nals ab shown in the �gure. [A: 6 Ω .]

Problem 18.12
18.12 R1 = 1, R2 = 2, · · ·R6 = 6 Ω in the circuit shown in
the �gure above. Calculate the equivalent resistance between
the terminals ab . [A: 15/13 Ω .]

Problem 18.13
18.13 R1 = 1, R2 = 2, R3 = 3 and R4 = 6 Ω in the circuit
shown in the �gure above. (a) Calculate the equivalent resis-
tance. (b) Calculate the current �owing through each resistor.

[A: (a) 2 Ω , (b) I1 = 3 , I2 = 1.5 , I3 = 1 , I4 = 0.5 A .]

Problem 18.14
18.14 R1 = 1, R2 = 2, R3 = 3 and R4 = 4 Ω in the circuit
shown in the �gure. (a) Calculate the equivalent resistance.
(b) Calculate the current �owing through resistor R1 .

[A: (a) 21/16 Ω , (b) I1 = 9 A .]

Problem 18.15
18.15 All of the resistors in the circuit above have the same
value R . (a) Find the equivalent resistance. (b) Calculate the
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potential di�erence Vab if R=8 Ω and E=26 V .
[A: (a) 13R/8 , (b) 10 V .]

Problem 18.16
18.16 R1 = 1, R2 = 2, R3 = 3 and R4 = 4 Ω in the circuit
shown above and 6.5 V in voltage is applied between ab . (a)
How much current is drawn from the battery when switch
S is open? (b) How much current is drawn from the battery
when the switch is closed? [A: (a) 8 A , (b) 7.8 A .]

Problem 18.17
18.17 58 W power is consumed in the circuit shown in the
�gure when the resistors, each with resistance R , are con-
nected to a 45 V -battery. Calculate the value of R .

[A: 25 Ω .]

18.18 Wheatstone bridge. The circuit shown in the �gure
below is used to determine an unknown resistance Rx . After
a battery is connected to the circuit, the value of the variable
resistor R3 is changed such that the current �owing through
a galvanometer connected between ab is zero.

Problem 18.18

Show that
Rx =

R2R3

R1
when the current on the galvanometer is zero. (Hint: This
is an interesting case in which resistors can be in series and
parallel at the same time. When the galvanometer current is
zero, both the points a and b will have the same potential,
and the current in the upper branch will continue without
going to the lower branch. It is su�cient to write potential
drops RiIi equal for each half of the circuit. )

Problem 18.19

18.19 R1 = 1, R2 = 2, R3 = 3, R4 = 4 and R5 = 5 Ω in
the circuit shown in the �gure. Considering that the current
�owing through R1 is 1 A , what is the emf value E of the
battery? [A: 24 V .]

Problem 18.20

18.20 The ammeter A in the �gure above shows the same
value when both of the switches are closed and when both
switches are open. Find the resistance R . [A: 60 Ω .]

?
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MAGNETIC FIELD

The ITER Tokamak reactor, un-
der construction in France as the
world’s largest fusion reactor, is
expected to produce electricity
in 2045. (The man on the bot-
tom right of the �gure shows the
scale.)
As no container can contain
the charged particles at 100 mil-
lion ◦C temperatures in the
medium called plasma, they are
suspended in the air with a very
strong magnetic �eld (in the yel-
low donut-shaped area in the �g-
ure).
We can better understand mag-
netic �eld if we �rst understand
how charged particles move in
magnetic �eld.

The magnetic needle of a compass will always point north, regardless of the
direction which you turn it. The Chinese and Indian civilizations were already
cognizant of magnetism thousands of years ago. It is said that, in Ancient Greece,
magnetized rocks were found in a region of Anatolia known as Magnesia. Sailors
have used magnetized compasses for navigation for a thousand years.

Understanding magnetism was possible as late as the 17th century. In the
1600s, the English scientist William Gilbert claimed that the Earth was a giant
magnet and that this was how it attracted the poles of a compass. In the 19th cen-
tury, two scientists, the French André Ampere and the Danish Oersted, observed
that a magnet would de�ect a current-carrying wire. Later, Michael Faraday
discovered that moving magnets generated emf.

All these discoveries indicated that there was a close relationship between
electricity and magnetism. Ultimately, Scottish scientist James Clerk Maxwell
merged electricity and magnetism under a single theory.

We shall discuss the properties of magnetism and its relation to electrical
forces in this and the next two chapters.
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19.1 MAGNETIC FORCE

We know how a horseshoe or bar magnet attracts nails or pins. This force
cannot have an electrical nature, since both the magnet and the nails are neutral.
From this observation, we can conclude the existence of a new “magnetic force.”
Indeed, we can see the presence of a magnetic �eld around magnets in the patterns
of iron dust scattered around a bar magnet, as seen in Figure 19.1.

The Coulomb force that we discussed in electrics was caused by electrical
charges. Using the same logic to look for a “magnetic charge” that causes magnetic

Figure 19.1: The magnetic
�eld lines observed in iron dust
around a magnet.

force, we observe that this is not possible. Consider that we take a magnet with
poles indicated as being North-South (N − S ) and divide it into two pieces. In
such a case, it is observed that each of the new pieces turns into a magnet with
N -S poles (Figure 19.2). We cannot separate one of the poles even if we repeat
this process and go down to the atomic scale. Each atom acts like a small magnet.
Today, in modern physics, it is understood that there is no single magnetic
pole.

So, what is the origin of the magnetic force? As we shall discuss later, mag-
netism has two sources:

Figure 19.2: We cannot isolate
magnetic poles even if we keep
splitting the magnet.

• Currents.
• Magnetic dipole moments of elementary particles.

We shall learn these concepts in this and subsequent chapters.
In our study of electricity, we had adopted the following modern view: A

charge distribution produces an electric �eld ~E at every point in space and then
a charge q placed in this �eld interacts with the electric �eld as ~F = q~E .

We shall use the same outlook for magnetic �eld:
• A current generates a magnetic �eld ~B at every point in space.
• A force ~F is exerted upon moving charges q and currents I in this magnetic

�eld.
We shall start with the second item about magnetism, setting aside how a

magnetic �eld is generated and concentrating �rst on trying to understand the
force that it exerts.

Magnetic Force Exerted on a Moving Electric Charge
A charge moving between the poles of a magnet is observed to de�ect from

its trajectory. The magnetic force exerted upon a charge q traveling with velocity
~v inside of a magnetic �eld is observed to have the following properties:
• The force is proportional to the charge q and is in the opposite direction for

+q and −q charges.

• The force is proportional to velocity v and perpendicular to it. The force is
zero if the charge is at rest (v = 0) .

• The force is proportional to the magnitude of the magnetic �eld B and
perpendicular to it.

All these properties indicate that magnetic force can be expressed as a vector
product as follows:

~F = q
(
~v × ~B

)
(Magnetic force on a charge) (19.1)
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Now, let us get to know the force ~F better by remembering the properties of a
vector product:
• Magnitude of the magnetic force. The magnitude of a vector product
~a × ~b is ab sin θ . Therefore, the force on charge q produced by velocity
vector ~v and magnetic �eld vector ~B with angle θ in between, will have the
magnitude

F = qvB sin θ

It can be seen that the force will be zero if the velocity is zero (v = 0 ) or if it
is parallel to the magnetic �eld (θ = 0◦) .

• Direction of the magnetic force. The orientation of a vector ~c = ~a × ~b is
perpendicular to both ~a and ~b . We use the right-hand rule to determine
which of the two directions in this orientation is to be used:

Figure 19.3: Direction of the
magnetic force according to the
right-hand rule.

According to the right-hand rule, when we point our four �ngers towards
the �rst vector (~a ) and point our palm towards the second vector (~b) , our
thumb gives the direction of ~c .
Likewise, for a positive charge q , the direction of the force is perpendicular
to the plane formed by both ~v and ~B , and when we point the four �ngers of
the right-hand towards the vector ~v and the palm towards the �eld vector
~B , the thumb gives the direction of the force ~F .

When the charge q is negative (−) , the formula (19.1) gives a force in the
direction of −~F . In other words, the magnetic forces exerted upon negative and
positive charges are in opposite directions.
Unit of Magnetic Field

The force formula (19.1) allows us to determine the unit of magnetic �eld. If we
compare both sides of the equation and substitute (coulomb/second = ampere) ,
we get the unit of magnetic �eld in the SI system as

1
N

C ×m/s
= 1

N
A·m

= 1 tesla = 1 T

The unit of magnetic �eld was named the tesla (T) in memory of the great Serbian
scientist Nikola Tesla (1857–1943).

The unit of tesla is extremely large for normal magnetic �elds. Another unit
of magnetic �eld is the gauss and

1 gauss = 10−4 T

For example, Earth’s magnetic �eld is approximately 1 gauss.
Motion of Charged Particles in a Magnetic Field

The fact that magnetic force is perpendicular to velocity ~v causes particles to
move in a speci�c trajectory. In the simplest case, let us consider a particle with
charge +q entering with velocity ~v perpendicularly into a medium in which the
magnetic �eld ~B is into the plane of the paper, as shown in Figure 19.4. (In the

Figure 19.4: Magnetic force is
always perpendicular to trajec-
tory.

following �gures in this chapter, the × symbol means into the paper and the �
symbol means out of the paper.)

According to the formula ~F = q(~v × ~B) , the force exerted upon the particle
will be perpendicular both to the velocity ~v and the magnetic �eld ~B . As force is
perpendicular to velocity, it cannot change the magnitude of the velocity, but can
only change its direction. (In other words, magnetic force does not perform work
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on the particle.) Even when the particle is slightly de�ected, the force will still be
perpendicular to the velocity ~v .

We know already what kind of motion has this property in which the force is
always perpendicular to the velocity vector. This is the circular motion that we
discussed in Section 3.3. In this case, the magnetic force provides the centripetal
force of the circular motion:

Fr = qvB = m
v2

r

From here, we �nd the radius of the circular motion as follows:

r =
mv
qB

(19.2)

Note that the numerator of this formula is p = mv , the momentum of the particle.
In scienti�c research and technological applications, the radius of the circular
motion of a particle is measured inside of a known magnetic �eld and either the
velocity v , the charge q or the m of the particle can be determined from this.

Figure 19.5: The most general
spiral motion of a charged parti-
cle.

If the particle does not enter the magnetic �eld as fully perpendicular, the
component of velocity along the magnetic �eld does not change. In such a case,
it performs circular motion on one hand and continues to move forward on the
other hand. This is the spiral motion.

Let us brie�y introduce the instrument called the mass spectrograph, which
is an important application of this formula.

In this instrument, shown in Figure 19.6, a charge +q generated at a source
of ion is �rst accelerated to a known velocity v under a potential di�erence V in
an electric �eld. The charge then enters perpendicularly into a uniform magnetic
�eld B and exits by following a semicircular path. The distance 2r of the point at
which it exits is determined using detectors. This data can be used to determine
the mass m of a particle with a known charge q .

The mass spectrograph was used to determine the masses of atoms very pre-
cisely and prove the existence of isotopes. Today, it is frequently used in medicineFigure 19.6: Mass spectro-

graph. and engineering, in addition to physics, chemistry and biology researches.

Example 19.1

Determine only the directions of the forces exerted upon charges
q1, q2 and q3 thrown with velocity v from the corners of a
cube, in the directions shown in the �gure. The magnetic �eld
vector ~B is in the +y direction.

Answer We use the formula (19.1) for the magnetic force:
~F = q

(
~v × ~B

)

The velocity vector ~v of charge q1 is given in the direction
of the +y axis as the vector ~B . The vector product of two
parallel vectors is zero:

~F1 = 0 (~v ‖ ~B )

The velocity of charge q2 is in the +x direction. If we point
the four �ngers of our right hand in the +x direction and
point our palm in the direction of ~B (+y ), our thumb will



19.2. MAGNETIC FORCE ON A CURRENT-CARRYING WIRE 323

point in the +z direction. Therefore, the force ~F2 is in the
+z direction.
Note that charge q3 is negative. In other words, a force will be
exerted in the opposite direction of the one to be found using
the right-hand rule. Again, if we point the four �ngers of our

right hand in the ~v (−z ) direction and point our palm in the
direction of ~B (+y ), our thumb will point in the +x direction.
The force will be opposite to this direction. Therefore, the
force ~F3 is in the −x direction.
The results are shown in the �gure above:

Example 19.2

In an area where the magnetic �eld has a magnitude of B=0.1 T
in the direction of the +z -axis, a proton is thrown at a velocity
of 106 m/s in the direction of the +y -axis. (The proton charge
is e=1.6 × 10−19 C and mass is mp=1.7 × 10−27 kg .)
(a) Find the magnitude and direction of the force exerted upon

the proton.
(b) Find the radius of the circular trajectory of the proton.

Answer (a) The force exerted upon the proton will be in the
+x direction according to the formula ~F=q

(
~v × ~B

)
, as shown

in the �gure. We calculate its magnitude:
F = qvB sin 90◦ = evB
F = 1.6 × 10−19 × 106 × 0.1 = 1.6 × 10−14 N

(b) As force is always perpendicular to velocity, the proton
follows a circular trajectory in the xy -plane. Since magnetic
force provides the centripetal force, we �nd that

m
v2

r
= qvB −→ r =

mv
qB

We substitute the values and calculate the radius as follows:

r =
1.7 × 10−27 × 106

1.6 × 10−19 × 0.1
= 0.11 m

19.2 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE

A current-carrying wire remains neutral because there are positive charges
in the background of the moving electrons. Therefore, no electric force is exerted
upon a current-carrying wire in an electric �eld.

However, the case is di�erent when a current-carrying wire is placed in a
magnetic �eld. Positive ions are not a�ected by the magnetic �eld, as they are at
rest; however, a magnetic force is exerted upon the moving electrons, and a net
magnetic force is thus generated on the wire.

We can calculate the force exerted upon a current I starting from the formula
~F=q(~v × ~B) exerted upon a charge q . Consider the amount of charge �owing
through the cross-section A during time interval dt (Figure 19.7). According to
the de�nition I = dq/dt of current, we get

dq = I dt

In section 18.1, we showed that electrons moved with an average drift velocity
Figure 19.7: Force exerted on a
charge dq in a conductor.

vd in conductors. These charges will travel the distance L = vd dt during the
time interval dt . As all these velocities are in the same direction and equal in
magnitude, we can assume that the total charge dq also moves with velocity
vd . Accordingly, the force exerted upon the total charge dq with velocity ~vd in
magnetic �eld ~B is

~F = dq
(
~vd × ~B

)
= I dt

(
~vd × ~B

)
If we de�ne ~L = ~vd dt as a displacement vector along the wire and in the direction
of the current, we can �nd the expression for the force exerted upon a piece of
wire with length L in a magnetic �eld:

~F = I
(
~L × ~B

)
(Magnetic force on a current) (19.3)

Note that the force is perpendicular to both the wire and the magnetic �eld.
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Example 19.3

The wires extending along the sides of a cube with side length a ,
as shown in the �gure, carry the currents with the same magni-
tude: I1=I2=I3=I . The magnetic �eld ~B is in the +y -direction.
Calculate the forces exerted upon the currents I1, I2 and I3 .

Answer
We use the formula (19.3) to calculate the magnetic force
exerted upon a current-carrying wire:

~F = I
(
~L × ~B

)
Here, ~L is a vector with the length of the wire and in the
direction of the current.
The force on I1 : In the �gure, the vector ~L is given in the −z
direction and the vector ~B in the +y direction. The force ~F1
will be in the +x direction according to the right-hand rule.

We calculate its magnitude as follows:
F1 = I LB sin 90◦ = IaB

The force on I2 : This time, the vector product is zero, as the
vector ~L is parallel to vector ~B :

F2 = 0
The force on I3 : As the vector ~B in the �gure is in the +y

direction, the vector ~F3 perpendicular to it will be parallel to
the xz -plane, in other words, inside that plane of the cube.
Likewise, the vector inside this plane that is perpendicular
to the vector ~L must be along its diagonal. The right-hand
rule gives the direction of the force as downward. We take
the value L =

√
2a and calculate the magnitude of the force:

F3 = I LB sin 90◦ =
√

2IaB
All three forces are shown in the �gure below.

Example 19.4

A conducting rod with weight W=0.3 N and a length of 50 cm
is suspended with conducting springs, as shown in the �gure.
The region has a magnetic �eld with a magnitude of 0.2 T into
the paper. What should the magnitude and direction of the

current �owing through the rod be such that the force on the
springs is zero?

Answer The magnetic force should be upward to balance
the weight of the rod. As the rod and the magnetic �eld are
perpendicular, we directly write the magnetic �eld and set it
equal to the weight W :

F = W → ILB = W
We calculate the current I from here as follows:

I =
W
LB

=
0.3

0.5 × 0.2
= 3 A

The current must �ow from the left to the right so that the
force is upward according to the right-hand rule.

19.3 MAGNETIC TORQUE ON A CURRENT LOOP – THE ELECTRIC
MOTOR

A conducting loop placed between the poles of a magnet starts to rotate when
a current �ows though it. This is the electric motor, which is the instrument that
ensured one of the greatest technological advances in history. Electric motors are
used everywhere, from tiny dentist drills to large cranes, electrical watches to
water pumps, CD drives to submarine propellers.

Figure 19.8 shows a rectangular loop placed inside of a magnetic �eld B . The
side lengths of the loop are a and b and it can freely rotate about the y -axis.

Figure 19.8: A current loop in
a magnetic �eld.

When a current I �ows through the loop, a force ~F = I (~L×~B) will be exerted
upon each side. The directions of these forces according to the right-hand rule
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are shown in Figure 19.8. And their magnitudes are

F1 = I b B cos θ (in the −y direction)
F2 = I a B (in the −z direction)
F3 = I b B cos θ (in the +y direction)
F4 = I a B (in the +z direction)

The net force on the loop is zero, as these forces are equal and opposite. Therefore,
the loop performs no translational motion.

However, the total torque of the forces is di�erent from zero, and it may thus
perform a rotational motion. Let us calculate the torques of these forces with
respect to the rotation axis y .

Figure 19.9: The forces on
the sides from di�erent angles:
Views from (a) above, (b) front.
(c) The dipole moment ~m in the
direction of the normal of the
loop as it makes angle θ with ~B .

Let θ be the angle between the normal of the loop and the magnetic �eld at
any time. Accordingly, we can write the sum of the moments as follows:

τ = F1.0 + F2 (b/2) sin θ + F3.0 + F4 (b/2) sin θ

τ = I ab B sin θ = I A B sin θ (19.4)

In this expression, the moments of the forces F1 and F3 are zero, because they
are parallel to the axis. A = ab is the area of the loop.

The product I A here is de�ned as themagnetic dipolemoment of a current
loop and is de�ned as a vector perpendicular to the plane of the loop, in the
direction of the normal vector n̂ (Figure 19.9c):

~m = I A n̂

More generally, if the loop has N windings, the magnitude of the dipole moment
will be:

m = N IA (Magnetic dipole moment) (19.5)

The aforementioned torque calculation is also valid for geometric shapes
other than a rectangle. As a result, the amount of torque exerted on a current
loop with dipole moment ~m in a magnetic �eld ~B is found as follows:

~τ = ~m × ~B (Magnitude: τ = mB sin θ) (19.6)

Figure 19.10: Hybrid automo-
biles have two motors, one gaso-
line and one electric (right).
The electric motor activates at
startup and when the speed
changes.

Electric Motor
The torque given with the expression (19.4) above, will try to rotate the loop

counterclockwise with respect to the directions given in the �gure, as it is positive.
However, after the loop makes a half rotation, in other words, when the bottom
side goes to the top, the torque of forces F2 and F4 will be negative this time, as
the currents are in the reverse direction. In this case, the loop will try to rotate in
the reverse direction.



326 19. MAGNETIC FIELD

Continuous rotation in the same direction cannot be achieved in this mecha-
nism. It is necessary to reverse the direction of the current at each half rotation.

There are two ways to achieve continuous rotation in electric motors:
1. In alternating current (AC) motors, the current varies as a sinusoidal wave.

After the loop makes a half rotation, the direction of the current reverses
automatically and ensures that the torque remains in the same direction.

2. In direct current (DC) motors, the current that always �ows out of the battery
in the same direction passes through a mechanism called the commutator
before reaching the loop (Figure 19.11). A commutator consists of two half

Figure 19.11: The commutator
reverses the current at each half
rotation.

conductor rings, and the side connected to the + charged pole of the battery
changes at each half rotation. The direction of the current thus changes at
each half rotation of the loop and the torque is ensured to remain in the same
direction.

Example 19.5

The loop shown in the �gure consists of 50 windings and can
rotate around the z -axis. A current of I=3 A is �owing through
each winding. The dimensions of the loop are a=1 m and
b=2 m . The magnetic �eld B = 2 T is towards the y -axis.
(a) Calculate the net torque on the loop by calculating the

torques acting on each side.
(b) This time, calculate the net torque by using the magnetic

dipole moment of the loop.

Answer
(a) The forces acting on each side are as shown in the �gure
according to the right-hand rule:

Among these forces, only the moment of ~F3 is di�erent from
zero with respect to the z -axis. As ~F1 is along the axis, and as
~F2 and ~F4 are parallel to the axis, they do not cause rotation
and have zero torques.
The remaining force ~F3 is in the −x direction and its magni-
tude is calculated using the formula (19.3) and multiplied by
the number of windings N :

F3 = NIbB sin 90◦ = 50 × 3 × 2 × 2 × 1 = 600 N
The moment arm a cos 37◦ is used when �nding the torque
of force F3 with respect to the z -axis:

τ = τ3 = F3 a cos 37◦

τ = 600 × 1 × 0.8 = 480 N·m
The direction of the torque will be so as to turn from the x -
to the y -axis.

(b) The magnetic dipole moment of the loop is calculated with
the formula (19.5):

m = NIA = 50 × 3 × (1 × 2) = 300 A·m2

We then calculate the torque from the formula (19.6). Here,
the angle between the magnetic �eld and the surface normal
should be taken:

τ = mB sin θ = 300 × 2 × sin 53◦ = 480 N·m
As it can be seen, both calculations give the same result, but
it is easier to work with magnetic moments.

Example 19.6

A current of 25 A is �owing through a circular loop with a
radius of 40 cm on the xy -plane. This region has a uniform
magnetic �eld of 0.3 T in a direction with a 45◦ angle with
the xy -plane. Find the magnetic moment of the loop and the

torque that is trying to rotate it.

Answer
The magnetic dipole moment of the loop is calculated with
the formula (19.5):

m = IA = I πr2 = 25 × 3.14 × 0.402

m = 12.6 A·m2

We then calculate the torque from the formula (19.6).
τ = mB sin θ = 12.6 × 0.3 × sin 45◦

τ = 2.7 N·m
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Multiple-choice Questions

1. Which is the unit of magnetic �eld in the SI unit system?
(a) tesla (b) gauss (c) ampere (d) einstein

2. What will the direction of the force be exerted upon a
positively charged particle thrown in the +y direction
in a magnetic �eld that is in the +x direction?

(a) +x (b) +y (c) +z (d) −z

3. Which of the following �gures correctly shows the force
acting on charge +q with the velocity ~v in the magnetic
�eld ~B?

(a) a & b (b) b & c (c) a & c (d) a & d

4. If a magnetic force towards the East is exerted upon a
positively charged particle thrown towards the North,
in which direction could the magnetic �eld be?

(a) Up (b) Down (c) South (d) West

5. What will the magnitude and direction of the force be
exerted on a particle with charge 4 C thrown upwards
from the ground with a velocity of 3 m/s in a 2 T mag-
netic �eld towards the North?

(a) 24 N to the West
(b) 24 N to the East
(c) 6 N to the West
(d) 6 N to the East

6. By what factor does the magnetic force acting on an
object increase if its velocity and the magnetic �eld are
both doubled?

(a) No change (b) 2 (c) 4 (d) 8

7. In which of the following cases will the magnetic force
exerted on a charge be zero?

I. If the velocity is perpendicular to the magnetic �eld,
II. If the velocity is parallel to the magnetic �eld,

III. If the velocity is zero,
IV. If the magnetic �eld is constant.
(a) I & II (b) II & III (c) I & III (d) II & IV

8. If the magnetic force exerted upon a charge +q is 5 N
in the +y direction, what will the force exerted upon a
charge −2q be?

(a) 10 N in the +y direction
(b) 10 N in the −y direction
(c) 2.5 N in the +y direction
(d) 50 N in the −y direction

9. Which of the forces exerted upon the charges shown in
the �gure above is to the right? (The magnetic �eld is
into the paper.)

(a) q1 (b) q2 (c) q3 (d) q4

10. What will the direction of the force be exerted upon a
current in the +y direction in a magnetic �eld in the +x
direction?

(a) +x (b) +y (c) +z (d) −z

11. By what factor does the magnetic force exerted upon
a current-carrying wire increase if its length and the
magnetic �eld are both doubled?

(a) No change (b) 2 (c) 4 (d) 8

12. By what factor does the magnetic force exerted upon a
wire increase if the current and the magnetic �eld are
both doubled?

(a) No change (b) 2 (c) 4 (d) 8

13. In which of the following cases will the magnetic force
exerted upon a current-carrying wire be zero?

I. If the current is perpendicular to the magnetic �eld,
II. If the current is parallel to the magnetic �eld,

III. If the current is zero,
IV. If the magnetic �eld is constant.
(a) I & II (b) II & III (c) I & III (d) II & IV

14. What will the magnitude and direction of the force be ex-
erted upon a wire with a length of 4 m and carrying 3 A
in current upward from the ground in a 2 T magnetic
�eld towards the North?

(a) 24 N to the West
(b) 24 N to the East
(c) 6 N to the West
(d) 6 N to the East

15. Which of the above �gures correctly show the force
acting on the current I in the magnetic �eld ~B?
(a) a & b (b) b & c (c) a, b & d (d) a & d
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16. Which section of the wire shown in the �gure below has
a force exerted upon it towards the right?

(a) I1 (b) I2 (c) I3 (d) I4

17. A charged particle is in circular motion in a magnetic
�eld. If its charge and mass are doubled, by what factor
will the radius of the circle change?

(a) No change (b) 2 (c) 4 (d) 1/2

18. Two charged particles with the same velocity are in cir-
cular motion with the same radius in a magnetic �eld.
Which of the following is correct?

(a) The charges of the particle are equal.
(b) The masses of the particles are equal.
(c) The charge/mass ratios of the particles are equal.
(d) The product charge×mass of the particles are equal.

19. What is the maximum torque exerted upon a loop with
a cross-section area of 1 m2 and carrying 2 A in current
in a 3 T magnetic �eld?
(a) 5 N·m (b) 6 N·m (c) 2 N·m (d) 4 N·m

20. In what orientation should a current loop be placed in a
magnetic �eld for the torque exerted upon it to be zero?

(a) Parallel to the magnetic �eld
(b) Perpendicular to the magnetic �eld
(c) 45◦ with the magnetic �eld.
(d) It is never zero.

Problems

19.1 Magnetic Force on Charges

Problem 19.1
19.1 Determine only the directions of the forces exerted
upon charges q1, q2 and q3 thrown with velocity v from the
corners of a cube, in the directions shown in the �gure. The
magnetic �eld vector ~B is in the +z direction.

[A: F1 = 0 , F2 : in the +y direction: F3 in the −x
direction.]

Problem 19.2
19.2 In a region with a magnetic �eld with a magnitude of
0.4 T in the +x direction, a q=3 µC charge is thrown with
a velocity of 5 × 106 m/s and at a 37◦ angle with the mag-
netic �eld. What are the magnitude and direction of the force
exerted upon the charge? [A: 3.6 N in the −z direction.]

19.3 When a 3 µC charge with a velocity of 106 m/s is
thrown into a B = 0.1 T magnetic �eld, a 0.15 N force is

exerted upon it. What is the angle between the velocity and
the magnetic �eld? [A: 30◦ .]

Problem 19.4
19.4 In a region where the magnetic �eld has magnitude
B=0.1 T in the direction of the +z -axis, an electron is thrown
at a velocity of 2 × 108 m/s along the +x -axis.
(a) Find the magnitude and direction of the force exerted upon
the electron. (b) Calculate the radius of the circular trajectory
of the electron. (The electron’s charge is −e=− 1.6× 10−19 C
and its mass is me=9.1 × 10−31 kg .)

[A: (a) 3.2 × 10−12 N in +y -direction, (b) 0.01 m .]

Problem 19.5
19.5 An electron enters the region of a magnetic �eld shown
in the �gure with a velocity of 2 × 108 m/s and exits perpen-
dicular to its incoming direction after traveling a quarter of a
circle 1.57 cm long. Calculate the magnitude of the magnetic
�eld in the region. (Hint: Calculate the radius from the length
of the quarter circle.) [A: 0.11 T .]

19.6 An electron at rest is �rst accelerated under an electric
potential di�erence of 200 kV , after which it enters a region
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where a perpendicular magnetic �eld of B=0.1 T is present.
(a) What is velocity of the electron? (b) What will the radius
of the circular path in the magnetic �eld be?

[A: (a) 2.7 × 108 m/s , (b) 1.5 cm .]

Problem 19.7

19.7 The proton shown in the �gure is thrown into a region
of unknown magnetic �eld with a velocity of 2 × 106 m/s .
The proton travels a semicircle and exits 20 cm away. Calcu-
late the magnitude and direction of the magnetic �eld in the
area (mp = 1.7 × 10−27 kg ). [A: 0.21 T out of the paper.]

19.2 Magnetic Force on Currents

19.8 When a current-carrying wire with a length of 75 cm is
placed perpendicularly in a magnetic �eld with a magnitude
of 0.2 T , a 3 N force is exerted upon it. What is the current
�owing through the wire? [A: 20 A .]

Problem 19.9

19.9 The wires extending along the sides of a cube with side
length a , as shown in the �gure, carry the currents with the
same magnitude: I1=I2=I3=I . The magnetic �eld ~B is in the
+z -direction. Calculate the forces exerted upon the currents
I1, I2 and I3 .

[A: F1 =0 , F2 = IaB : in the −y direction, F3 = IaB : in the
−x direction]

Problem 19.10

19.10 A 3 A current is �owing through a wire that makes a
53◦ angle with the �eld lines in an area with a 0.5 T magnetic
�eld in the plane shown in the �gure. Calculate the magni-
tude and direction of the force exerted upon a unit length of
the wire. [A: 1.2 N into the paper.]

Problem 19.11
19.11 A conducting rod with weight W = 0.5 N and a length
of 40 cm is suspended with conducting springs, as shown in
the �gure. The region has a magnetic �eld with a magnitude
of 0.1 T out of the paper. What should the magnitude and
direction of the current �owing through the rod be such that
the force on the springs is zero. [A: 12.5 A to the left.]

Problem 19.12
19.12 A metal rod with a length of 40 cm , a weight of 0.5 N
and zero resistance is freely placed on two supports, as shown
in the �gure. The area has a magnetic �eld of 0.3 T out of
the paper. What is the minimum value of the resistance R
such that the rod does not jump into the air when the circuit
is connected to a 12 V -battery? [A: 2.9 Ω .]

Problem 19.13
19.13 A constant current of 3 A is given to the circuit in
the �gure above from a source. A metal rod with a mass of
100 g and a length of 50 cm is freely placed on the friction-
less points ab . There is a magnetic �eld with a magnitude of
0.2 T into the paper. What will the acceleration of the rod be
when the current is �owing? [A: 3 m/s2 .]

19.3 Magnetic Torque

Problem 19.14
19.14 A 5 A current is �owing through a circular loop with
radius 10 cm in the xy -plane. This region has a magnetic
�eld of 0.2 T in a direction at a 37◦ angle with the xy -plane.
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Find the magnetic moment of the loop and the torque that is
trying to rotate it. [A: m = 0.16 A·m2 , τ = 0.25 N·m .]

Problem 19.15
19.15 A rectangular loop made of 20 windings can rotate
around the z -axis and a current of I=5 A is �owing through

each winding. The dimensions of the loop are a = 1 m and
b = 2 m . The magnetic �eld in the region is B=3 T towards
the x -axis. (a) Calculate the magnetic moment of the loop,
(b) Calculate the torque exerted on the loop.

[A: (a) 200 A·m2 , (b) 360 N·m .]

19.16 In the Bohr model of the Helium atom, an electron ro-
tates with a velocity of 6.6×106 m/s around the nucleus in an
orbit with a radius of 1.8×10−11 m . (a) In how many seconds
does the electron complete one circle? (b) If we consider the
electron as the charge �owing through a given cross-section,
what will the current I be? (c) What is the magnetic moment
generated by this orbital motion of the electron?

[A: 1.7 × 10−17 s , (b) 9.3 mA , (c) 9.5 × 10−24 A·m2 .]

?
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The 2000-ton CMS detector is
being inserted into its socket at
the CERN European Nuclear Re-
search Center. The supercon-
ductor magnet at the center of
the detector (the gray area) can
generate a magnetic �eld up to
4 T.

We started our study of magnetism in Chapter 19 by examining its e�ects on
moving charges and currents. But we did not discuss the source of this magnetic
�eld. Now, we shall examine how a magnetic �eld is generated.

The source of magnetic �eld is moving charges and currents. This was �rst
discovered by the Danish scientist Oersted in 1819 through his observation of the
de�ection of a compass needle near a current-carrying wire. Soon afterwards, the
French scientists Biot and Savart were able to establish the form of the magnetic
�eld produced by any current.

In electrostatics, we had used the Gauss law as a shortcut for calculating
electric �eld. There is a similar law for magnetic �eld: We shall examine Ampère’s
law in this chapter. Then, we will look at the magnetic properties of matter on
the atomic scale.
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20.1 MAGNETIC FIELD OF A CURRENT

As the simplest case, let us consider the magnetic �eld generated by a straight
wire carrying a current I (Figure 20.1). Observations have revealed the following:
• Magnetic �eld lines are circles centered around the wire on a plane perpen-

dicular to the wire.
• According to the right-hand rule, the direction of the magnetic �eld is in

the direction in which the four �ngers fold when the thumb points in the
direction of the current.

Figure 20.1: Magnetic �eld of a
straight wire current.

• The magnitude of the magnetic �eld decreases as inversely proportional to
the radius r .

The French scientists Jean-Baptiste Biot and Felix Savart performed meticulous
experiments on the magnetic �eld of current-carrying wires and discovered the
expression of magnetic �eld for all kinds of currents. Known as the Biot-Savart
law, this formula gives the contribution of a small current element I d` with
length d` to the magnetic �eld (Figure 20.2):

The Biot-Savart Law

The contribution of a small current element I d` with length d`
and carrying a current I to the magnetic �eld at a point at dis-
tance r is

dB = k′
I d` sin θ

r2 (20.1)

The angle θ here is the angle between the position vector ~r and
the direction of d` .

Figure 20.2: The contribution
dB of a piece d` of a current-
carrying wire to the magnetic
�eld at point P located at ~r
is perpendicular to the plane
formed by these two vectors.

The constant k′ in this formula has the following value in the SI system:

k′ = 10−7 T·m/A (20.2)

In electrics, we had expressed the constant k in terms of ε0 , the electric permit-
tivity of free space. Likewise, in magnetism, a constant µ0 called the magnetic
permeability of free space is de�ned as follows:

k′ =
µ0
4π

−→ µ0 = 4π × 10−7 T·m/A (20.3)

Let us emphasize the important points of the Biot-Savart law:

• The magnetic �eld of each small current element I d` is perpendicular to the
plane formed by the element I d` and the position r .

• The right-hand rule gives the direction of the magnetic �eld among the two
possible perpendicular directions: The thumb is directed towards the current,
the four �ngers are pointed towards r and the palm shows the direction of
the vector d~B .

• The magnetic �eld contribution is directly proportional to the current I and
inversely proportional to r2 , the square of the distance.

• Magnetic �eld is directly proportional to the sine of the angle between the
element I d` and r .
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Vector Product Expression of the Biot-Savart Law
In the Biot-Savart formula above, sin θ and the lengths d` and r indicate

that this is actually a vector product. Indeed, if we write the piece d` as a vector
d~̀ in the direction of the current I and take r̂ as the unit vector in the direction
of r , we get the vector expression of the Biot-Savart law as follows:

d~B = k′
I d~̀ × r̂

r2 (Biot-Savart: vector expression) (20.4)

It can be seen that this expression is equivalent to the magnetic �eld Eq. (20.1) in
terms of both magnitude and direction.
Magnetic Field of a Finite Wire

Every current �ows through a �nite wire consisting of the sum of small d`
parts. The magnetic �eld of a whole current will be the limit sum, in other words,
the integral of the small d~B vectors above:

~B = k′
∫

I d~̀ × r̂
r2 (20.5)

This integral will be taken over the whole wire.

20.2 MAGNETIC FIELD CALCULATIONS

Let us calculate the magnetic �elds of the most essential current distributions.
Magnetic Field of an Infinite Straight Wire

Consider a straight wire extending along the x -axis chosen upward, and
carrying current I . Let us calculate the magnetic �eld at a point P as shown in
Figure 20.3. We choose the origin at the point on the wire that is closest to point
P at a distance a . (This choice will not a�ect the generalization, as the wire is
in�nite.)

Let us choose the length element d` on the wire at distance x and with length
dx . If we write the contribution of this piece to the magnetic �eld at point P
located at distance r according to Eq. (20.1) of the Biot-Savart law, we get

Figure 20.3: The dB contribu-
tion of a length element dx on
an in�nite wire to the magnetic
�eld at point P .

dB = k′
I dx sin θ

r2

The direction of the magnetic �eld dB will be into the plane of the paper. The
contributions of all other dx elements on the wire to this point P will always
be into the paper, in other words, in the same direction. Therefore, the algebraic
sum of these dB contributions can be directly integrated. Considering that the
wire ranges from (−∞) to (+∞) , we get

B = k′ I
∫ ∞

−∞

dx sin θ
r2

Let us write all the variables in the integral in terms of x . If we use the angle
(π − θ) , the complement of angle θ , we get

r =
√

x2 + a2

sin θ = sin(π − θ) =
a
r

=
a

√
x2 + a2
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When we use these values,

B = k′ I
∫ ∞

−∞

dx (a/
√

x2 + a2)
x2 + a2 = k′Ia

∫ ∞

−∞

dx(
x2 + a2)3/2︸               ︷︷               ︸
2/a2

Let us state here that the result is 2/a2 without going into the details of the
Figure 20.4: Magnetic �eld of a
straight wire.

calculation. (It can be calculated by a change of variable x=−a cot θ .) Accordingly,
the magnetic �eld of an in�nite straight wire is

B =
2k′I

a
(Magnetic �eld of a straight wire) (20.6)

The magnetic �eld lines form concentric circles with the wire as the axis. The
vector ~B will be tangent to these circles (Figure 20.4).
Magnetic Field of a Current Loop

We wish to �nd the magnetic �eld at a point along the axis of a circular loop
with radius a and carrying a current I . Let us choose the small length element
d` along the wire as the arc of circle ds (Figure 20.5). Let us place this arc ds
on the y -axis and in the +z direction. Let point P be located on the x -axis at
distance h . These choices do not a�ect the generality because of the symmetry
of the loop.

Figure 20.5: The contribution
dB of a piece of arc ds to the
magnetic �eld.

As seen in the �gure, the contribution dB of this current element I ds will be
perpendicular to both ds and the unit vector r̂ , and therefore will be located in
the xy -plane. Also, the angle between ds and r̂ will be θ = 90◦ , because every
vector located on the plane perpendicular to ds will be perpendicular to ds .

If we write this contribution dB according to the Biot-Savart law, we get

dB = k′
I ds sin 90◦

r2 = k′ I
ds

a2 + h2

Let us separate the vector d~B into two components, one in the x -direction and
the other perpendicular to it:

dBx = dB cos γ

dB⊥ = dB sin γ

If we move the arc ds around the loop and add each contribution d~B , the contri-
butions dB⊥ will make a circle around point P and give zero contribution due to
symmetry: ∫

dB⊥ = 0 (due to symmetry)

Therefore, the contributions in the direction of the x -axis will give a total magnetic
�eld in the x -direction:

B =

∫
dBx =

∫
dB cos γ

The γ angles shown in two places in the �gure are equal because they are angles
with perpendicular sides. Accordingly, we get cos γ = a/r = a/

√
h2 + a2 and the
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integral simpli�es as follows:

B =

∫
dB cos γ = k′ I

∫
ds

a2 + h2

a
√

h2 + a2

=
k′I a(

h2 + a2)3/2

∮
ds

All of the constants are taken outside of the integral here and the
∮

sign is used
to indicate that the elements ds form a closed curve around the loop.

The sum of the pieces of arc around a complete loop gives the circumference
of the circle. Therefore, if the value of the integral is taken as 2πa , we �nd the
result as follows:

B =
2πk′I a2(

h2 + a2)3/2 (Magnetic �eld on the axis of a loop) (20.7)

The magnetic �eld at the center of the loop is found by taking h = 0 in this
formula:

B =
2πk′I

a
(Magnetic �eld at the center of a loop) (20.8)

Figure 20.6 shows the magnetic �eld lines of a current loop. The lines are not
Figure 20.6: Magnetic �eld
lines of the current loop and
magnetic dipole moment.

parallel to the axis but curve over it at points outside of the axis.
Magnetic Field of a Magnetic Dipole

In section 19.3, we de�ned the magnetic dipole moment of a current loop as
follows (Eq. 19.5):

m = I A

A is the surface area of the loop. Let us return to Eq. (20.7), which we found
above for the magnetic �eld on the axis of a current loop:

B =
2πk′I a2(

h2 + a2)3/2

We can easily form a dipole moment in this expression. As the surface area of the
circle is πa2 , we get

B =
2k′(I πa2)(
h2 + a2)3/2 =

2k′m(
h2 + a2)3/2

At distances very far from the magnetic dipole, in other words, when h � a , the
approximate expression of magnetic �eld becomes as follows:

B ≈
2k′m

h3 (Field of a magnetic dipole at large h ) (20.9)

Considering a current loop as a magnetic dipole has many advantages: An electron
rotating around the nucleus in an atom generates a circular current loop and has
an orbital magnetic dipole moment. As we shall discuss later in this chapter, the
magnetic properties of matter can be explained by taking atoms to be very small
magnetic dipoles.
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Example 20.1

The Earth’s magnetic �eld is 5 × 10−5 T .
(a) At what distance from a straight wire carrying a current of
1 A will the magnetic �eld be equal to this value?
(b) How much current should pass through a circular loop with
a radius of 1 m for the magnetic �eld at its center to be equal
to this value?

Answer
(a) We use Eq. (20.6) for the magnetic �eld of a straight wire:

B =
2k′I

a
We set this expression equal to the Earth’s magnetic �eld and

�nd the distance a :
a =

2k′I
B

=
2 × 10−7 × 1

5 × 10−5

a = 0.004 m = 4 mm

(b) We use Eq. (20.6), which gives the magnetic �eld at the
center of a circular loop:

B =
2πk′I

a
We again set this expression equal to Earth’s magnetic �eld
and calculate the current:

I =
aB

2πk′
=

1 × 5 × 10−5

2 × 3.14 × 10−7 = 80 A

Example 20.2

In the �gure, there is a 2 cm distance between the parallel
currents I1 = 100 A and I2 = 200 A .
(a) Calculate the total magnetic �eld at the midpoint A be-

tween the wires.
(b) Calculate the magnetic �eld at point B located 1 cm away

from the wire I2 .

Answer
(a) First, let us determine the directions of the magnetic �elds
B1 and B2 at both points. Using the right-hand rule, the

magnetic �elds will appear as viewed from the top of the
paper in the �gure above.
Then, we use the formula B = 2k′I/a to calculate the mag-
netic �eld of each current:
At point A:

B1 =
2k′I1

a
=

2 × 10−7 × 100
0.01

= 0.002 T = 2 mT

B2 =
2 × 10−7 × 200

0.01
= 4 mT

We take the resultant vector of the two opposite vectors at
point A:

BA = B1 − B2 = 0.002−0.004 = −2 mT

At point B:

B1 =
2 × 10−7 × 100

0.03
= 0.00067 T = 0.67 mT

B2 =
2 × 10−7 × 200

0.01
= 0, 004 T = 4 mT

We take the resultant vector of the two vectors in the same
direction at point B:

BB = B1 + B2 = 0.67 + 4 = 4.7 mT

Example 20.3

1 A of current is �owing through a circular conducting loop
with a radius of 1 m .
(a) What is the magnitude of the magnetic �eld at the center

of the loop?
(b) At what point along the axis will the magnetic �eld drop

down to half of its value at the center?

Answer
(a) We use Eq. (20.8) to �nd the magnetic �eld at the center
of the current loop:

B =
2πk′I

a
We substitute the numerical values and calculate the magnetic
�eld:

B =
2 × 3.14 × 10−7 × 1

1
= 6.3 × 10−7 T

(b) There is no need to recalculate the value of the magnetic
�eld here. We only �nd the ratios of the expressions at the
center and at distance h . The expression for the magnetic
�eld at point h along the axis of a current loop was given
with in Eq. (20.7):

B =
2πk′I a2(

h2 + a2)3/2

Let us use B0 to indicate the expression that we wrote above
for the �eld at the center of the loop, and take the ratio of
these two �elds:

B
B0

=
2πk′I a2(

h2 + a2)3/2 ×
a

2πk′I
=

[
(h/a)2 + 1

]−3/2

We substitute the values B=B0/2 and a=1 and solve for h :
[h2 + 1]3/2 = 2 → h = 0.77 m
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Example 20.4

In the �gure, the straight wires perpendicular to the plane of
the paper have currents I1 = 60 A and I2 = 50 A . Calculate
the components of the total magnetic �eld at point P.

Answer
We �rst use Eq. (20.6) to calculate the magnitudes of the �elds
B1 and B2 at point P:

B =
2k′I

a

B1 =
2 × 10−7 × 60

0.003
= 0.004 T = 4 mT

B2 =
2 × 10−7 × 50

0.005
= 0.002 T = 2 mT

We then use the right-hand rule to �nd the directions of these
magnetic �eld vectors. The direction of both �elds will be as
follows:

Lastly, we �nd the sum of these two vectors in terms of their
components:

~B = ~B1 + ~B2

Bx = B1 − B2 cos 53◦ = 4 − 2 × 0.6 = 2.8 mT
By = −B2 sin 53◦ = −2 × 0.8 = −1.6 mT

The magnitude and direction of the total magnetic �eld can
be calculated from these components if required.

20.3 FORCE BETWEEN PARALLEL CURRENTS – AMPERE UNIT

In Chapter 19, we calculated the force exerted upon a current placed inside of
a magnetic �eld. We now know the magnetic �eld produced by current-carrying
wires. Therefore, we can understand the interaction between two current-carrying
wires: The magnetic �eld generated by one of the wires will exert a force upon
the second wire.

Let us consider two straight parallel wires with distance d in between (Fig-
ure 20.7). Suppose currents I1 and I2 are �owing through these wires in the same
direction. The magnetic �eld generated by the current I1 at distance d is given
by the equation (20.6):

B1 =
2k′I1

d
In Chapter 19, we saw that the force exerted upon the length L of the second
wire in this magnetic �eld B1 is ~F = I(~L × ~B) (equation 19.1):

Figure 20.7: The magnetic �eld
of two parallel currents exerts a
force upon the other.

~F = I2
(
~L × ~B1

)
As shown in Figure 20.7, the magnetic �eld B1 is perpendicular to the other wire
with current I2 . In such a case, the force will also be perpendicular to the current
I2 and the �eld B1 and be towards the wire I1 . In other words, the two wires
will attract each other. Let us calculate the magnitude of the force:

F = LI2 B1 sin 90◦ = LI2
2k′I1

d
= 2k′L

I1I2

d

We could have done this calculation for the force exerted upon the current I1 in
the magnetic �eld generated by the current I2 . In such a case, we would have
found the same force to be equal and in the opposite direction in accordance with
Newton’s third law.

Figure 20.8: Parallel currents
attract and anti-parallel currents
repel each other.

If the currents were taken as opposite to each other (anti-parallel), we would
have found that the wires repelled each other. Therefore, parallel currents attract
and anti-parallel currents repel each other.
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The magnitude of the force in both cases is as follows:

F =
2k′ I1 I2

d
L (Force between parallel currents) (20.10)

Definition of the Ampere Unit
Let us calculate the expression for force between parallel currents that we

found above, between two equal currents I1 = I2 = 1 A separated by d = 1 m .
The force exerted upon a unit length of wire will be as follows:

F
L

=
2k′I1I2

d
=

2 × 10−7 × 1 × 1
1 m

= 2 × 10−7 N/m

This expression is the de�nition of the unit of current ampere (A), which is one
of the basic units in the SI system:

When a force of 2 × 10−7 N/m is exerted per unit length between two parallel
wires separated by 1 m and carrying identical currents, the current �owing through
the wires is 1 ampere (A).

Figure 20.9: The Watt balance
used to measure the force be-
tween currents.

This de�nition allows for the most accurate measuring assembly that can be
installed in a laboratory. An instrument called the Watt balance (Figure 20.9) is
used to keep a current-carrying weight in balance with the same current, and it
is thus ensured that the current in both wires is identical.

Example 20.5

In the �gure, wires perpendicular to the plane of the paper con-
stitute the corners of an equilateral triangle with side lengths
of 1 mm . Since I1 = I2 = I3 = 100 A , calculate the total force
exerted upon 1 m of length on the wire with current I3 .

Answer
The force between parallel currents is given in Eq. (20.10):

F =
2k′ I1 I2

d
L

The magnitude of the forces exerted by the currents I1 and
I2 are equal, because the magnitude of the currents and dis-
tances are equal:

F1 = F2 =
2 × 10−7 × 1002

0.001
× 1 = 2 N

We use the practical rule to �nd the directions of these two
forces: Parallel currents attract and anti-parallel currents re-
pel each other. Accordingly, the forces on current I3 are as
follows:

The sum of two equal forces making equal angles with the
horizontal will be towards their angle bisector, in other words,
horizontal:

F = F1x + F2x = 2F1 cos 60◦

F = 2 N

Example 20.6

A current of I2=4 A �ows through the rectangular loop laying
on the same plane as the straight wire carrying a current of
I1=25 A , as shown in the �gure. The distance of the loop to the
near side is a=1 cm , its width is b=3 cm and length is c=5 cm .
Calculate the net force exerted upon the loop.

Answer
We �rst write the magnetic �eld of the straight wire:
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B1 =
2k′I1

r
Its direction is into the plane of the paper inside of the loop.

Eq. (19.1) is used to �nd the force exerted upon the piece
of current I2 with length L in this magnetic �eld:

~F = I2

(
~L × ~B1

)

Using the right-hand rule to calculate this vector product, the

forces exerted upon four sides are in the directions shown in
the �gure:
The forces F2 and F4 do not contribute to the total force, as
they are equal and in the opposite direction. Therefore, it is
su�cient to calculate the forces F1 and F3 :

F1 = I2LB1 = 2k′I1I2
c
a

= 2 × 10−7 × 25 × 4
5
1

= 1 × 10−4 N

F3 = 2 × 10−7 × 25 × 4
5

1 + 3
= 0.125 × 10−4 N

The di�erence of these two forces gives the total force as
being towards the right:

F = F1 − F3 = 0.875 × 10−4 N

20.4 AMPERE’S LAW

In using the Biot-Savart law, we have to take an integral to �nd the magnetic
�eld of a current distribution. These integrals are often complicated. However, we
can �nd the magnetic �eld without having to integrate if the current distribution
has some symmetry. This is possible with Ampère’s law.

Let us consider a simple case to understand the essence of Ampère’s law.
We had previously calculated the magnetic �eld of an in�nite straight wire. We
had found the magnetic �eld at distance r from a wire carrying a current I in
Eq. (20.6):

Figure 20.10: Closed circular
curve around a straight wire.

B =
2k′I

r
Now, let us take the integral of the magnetic �eld’s component that is tangent
to the circle with radius r . As shown in Figure 20.10, we multiply the tangent
component of the magnetic �eld B at each point with the small element of arc
ds at that point and add them over the circle. This is di�erent from the familiar
integral that we take along the x -axis. It is called a line integral, because it
is taken along a curved line (circle). As the magnetic �eld of an in�nite wire is
tangent to the circle with radius r anyway, it is su�cient to take its integral:∮

B ds = B
∮

ds

The magnetic �eld B was taken outside of the integral, as it has the same value
everywhere on the circle. The integral of small elements of arc ds over the full
circle will be the circumference 2πr . If we also use the expression for magnetic
�eld, we get ∮

B ds = B 2πr =
2k′ I

Ar
2πAr = 4πk′ I = µ0 I

In the last expression, we replaced k′ = µ0/4π with the magnetic permeability of
vacuum µ0 .

It is surprising that the result is independent of radius r . Of course, in this
particular case, this resulted from the fact that the magnetic �eld of an in�nite
wire is inversely proportional to r . However, advanced integration techniques
can be used to prove that the integral of any current distribution over any closed
curve gives the same result in the most general case.
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The result would have been zero if this integral had been taken over any
curve that left the current I outside. If we accept this without a proof, Ampère’s
law is expressed as follows:

Ampère’s Law

The line integral of the tangential component of the magnetic
�eld over any closed curve is proportional to the net current
crossing any surface bounded by the closed curve:∮

~B · d~s = µ0 Iencl (20.11)

In this formula, Iencl indicates the net current enclosed by the closed loop, in
other words, if the current in one direction is positive, the current in the negative
direction is included as negative. Currents outside of the loop are not taken into

Figure 20.11: The currents
I1, I2 are taken into considera-
tion according to Ampère’s law.
The current I3 outside of the
loop is not taken into considera-
tion.

consideration. The scalar product ~B ·d~s shows that the projection of the magnetic
�eld along the path is to be taken.

It is not necessary to carry out this integral when applying Ampère’s law. We
take the magnetic �eld B outside of the integral by examining the symmetry of
the problem, and this makes it easier to calculate the left-hand side. It is only
required to add the currents on the right-hand side.

Example 20.7

The current I �owing through an in�nite cylindrical conductor
with radius R is evenly distributed throughout its cross-section.
Find the magnetic �eld outside and inside of the cylinder.

Answer
It is always necessary to �nd a symmetry to apply Ampère’s
law. The most basic symmetry in magnetism is the magnetic
�eld of a straight wire current. The magnetic �eld of a straight
wire is generated as tangent to circles centered around the
wire. This should be the starting point if nothing disrupts
this symmetry.
Outside of the wire: Let us consider an imaginary circle with
radius r > R . Looking from a point on this circle, both halves
of the wire will give the same contribution because of the
symmetry. Therefore, the magnetic �eld should be in a plane
perpendicular to the wire. Again, looking from a point on this
circle, the half sections along the wire would give the same
contributions that would result in a magnetic �eld along the
tangent of the circle. (We could also deduce that dB is in
the tangential direction from the Biot-Savart law, dB being

perpendicular to both d` and r .)
According to Ampère’s law Eq. (20.11), the integral of

this tangential magnetic �eld along the circle with radius r
should be equal to the enclosed net current:∮

~B · d~s = µ0 Iencl

As B is parallel to the path, we have ~B · d~s = B ds and take
the constant value B outside of the integral. The remaining
integral is equal to the circumference of the circle 2πr . The
current on the right-hand side is the total current I :

B (2πr) = µ0 I → B =
µ0I
2πr

=
2k′I

r
This result is the same as the straight wire expression.
Inside of the wire: Let us again consider an imaginary circle
with radius r < R . Again, according to symmetry, the mag-
netic �eld on the circle should have equal value at every point
on the circle and be tangent to the circle. We write Ampère’s
law as follows:∮

B ds = B (2πr) = µ0 Iencl

This time, the current inside of the circle is less. As the current
is uniformly distributed over the cross-section of the cylin-
der with radius R , we use proportions to �nd the amount
enclosed inside of the radius r :

Iencl =
I
πR2 · πr2

We substitute this expression and �nd B :
B =

µ0Ir
2πR2 =

2k′I
R2 r
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Example 20.8

Solenoid. Calculate the magnetic �eld inside and outside of
a solenoid with in�nite length and carrying a current I . The
number of windings per unit length is n .

Answer

We obtain a solenoid by taking a conducting wire and wind-
ing it spirally around a long cylinder. Recall from the topic
of electrics that a plane capacitor generated uniform elec-
tric �eld. Likewise, we use a solenoid to generate a uniform
magnetic �eld.

In Section 20.2, we found the magnetic �eld of a circular
current loop and showed that it had the following distribu-
tion:

Now, let us consider that we place a second identical current
loop next to it. Performing vector summation of the magnetic
�eld at every point, we observe that lines in the interior re-
gion get more and more parallel to the axis and exit the loop
much later.

When in�nitely many such loops are placed side by side,
the magnetic �eld inside of the solenoid becomes parallel to
the axis and approaches zero outside. As a result, we obtain
the following structure:

Now, let us apply Ampère’s law along the rectangular
path abcd shown in the �gure above:∮

~B · d~s =
[ ∫ b

a
+

∫ c

b
+

∫ d

c
+

∫ a

d

]
~B · d~s = µ0 Iencl

Only the �rst of these integrals will be non-zero. This is be-
cause, in the 2nd and 4th integrals (paths bc and da ), the
vector ~B will be perpendicular to the path d~s and the scalar
product will be zero. The third integral is completely outside
of the solenoid where it was shown that B = 0 . As the value
of B is the same along ab , we take it outside of the integral.
If we use L to indicate the distance ab , the left-hand side
becomes as follows:

B L = µ0 Iencl
Now let us �nd the value of Iencl on the right-hand side.
Since n is the number of windings of the solenoid per unit
length, the number of windings inside of the rectangle will
be nL . As current I is passing through each one, the amount
of current inside will be nLI :

B L = µ0 nLI
From here, we �nd the expression for the magnetic �eld inside
of the solenoid:

B = µ0 nI (Magnetic �eld of a solenoid) (20.12)

Note that the result is not dependent on radius. The mag-
netic �eld has this uniform value at every point inside of the
volume of the solenoid.

Example 20.9

Toroid. Calculate the magnetic �eld at a distance r inside of a
solenoid consisting of N total windings wound in the shape of
a toroid (donut) carrying a current I .

Answer Let us consider the toroid as consisting of N cur-
rent loops. As the magnetic �eld of each loop on its axis is
along that axis, the structure of the toroid will not change
this symmetry and the magnetic �eld inside will circulate

around the toroid in the direction of the axes of loops.
Now let us consider an imaginary loop with radius r inside
of the toroid and apply Ampère’s law:∮

~B · d~s = µ0 Iencl

As ~B is parallel to the path along the circle, the scalar product
becomes B ds and we take B outside of the integral, because
it does not vary along the path. Also, Iencl on the right-hand
side is the sum of N currents with value I :

B (2πr) = µ0 NI
From here, we �nd the magnetic �eld of the toroid:

B =
µ0 NI
2πr

=
2k′NI

r
If we had performed the same operation for a circle outside
of the toroid, we would have found the magnetic �eld there
to be zero.
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20.5 MAGNETIC PROPERTIES OF MATTER

It is possible to turn a non-magnetic iron nail into a magnet. This can be
performed in two ways: �rst, by keeping the nail in contact with the poles of a
horseshoe magnet for a while, as shown in Figure 20.12-a. When we detach it
later, we observe that the nail also starts to attract needles, in other words, that it
has gained permanent magnetism.

Figure 20.12: We magnetize a
nail through two methods: (a)
Contact with a permanent mag-
net, (b) Placing it inside of the
magnetic �eld of a solenoid.

The second way is to place a non-magnetic iron nail in the gap between
the windings of a solenoid and send a current through the solenoid for a while
(Figure 20.12-b). This nail is again observed to gain magnetic property later.

These observations show that magnetism is intrinsic to matter. What is the
source of this magnetism? Why can magnetism be permanent in some materials,
such as iron and nickel? We need to examine the atomic structure of matter in
order to answer these questions.
Magnetic Dipole Moment of Atoms

Negatively charged electrons (e−) in an atom rotate around a positive nucleus
(Figure 20.13). In classic physics, they are assumed to rotate in a circular path with
radius r at speed v . Accordingly, we can consider that the electron generates a
current around the nucleus. Since the current is the amount of charge passing
through a cross-section per unit time, one pass of the charge e taking place in
one period T=2πr/v will give a current of:

Figure 20.13: The current and
magnetic moment ~m generated
by the orbital motion of an elec-
tron.

I =
∆q
∆t

=
e
T

=
e

2πr/v
=

ev
2πr

(In modern physics, this model is not exactly correct, because neither the speed
nor the orbit radius of the electron are well-de�ned quantities. Nevertheless, the
classical model is useful to have a rough idea.)

We had studied this current loop previously (in Section 20.2) and calculated
its magnetic �eld and its magnetic dipole moment. If we write the de�nition of
the magnetic dipole moment here for the electron, we get

m = I A =

( ev
2πr

)
πr2 = 1

2 evr

Therefore, atoms have a magnetic dipole moment caused by the rotation of
electrons in their orbit.

In Chapter 7, we de�ned the angular momentum of a point mass as L=mvr .
If we use me here to indicate the mass of the electron, we get

mL =
e

2me
L

We thus see that there is a relation between angular momentum and magnetic
dipole moment: Each rotating particle generates an orbital magnetic moment
that depends on its angular momentum.

Figure 20.14: The magnetic
moment of the atom consists of
the contributions of spin and or-
bit.

Electrons also have another angular moment called the spin, which is intrinsic
to them (Figure 20.14). The spin angular moment has no classic explanation, but
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you may consider the electron as a spinning top rotating about its own axis.
Therefore, in addition to the orbital magnetic moment, it is necessary to add a
spin magnetic moment, indicated with ms :

~m = ~mL + ~ms

Consequently, every atom generates a magnetic �eld caused by its total
magnetic dipole moment ~m . When placed in an external magnetic �eld, it
contributes to and changes the net surrounding magnetic �eld.
Magnetization ( ~M )

In section 19.3, we found the torque exerted upon the magnetic dipole moment
of a current-carrying loop in an external magnetic �eld (Eq. 19.6):

τ = mB sin θ

The atoms of a material at the macroscopic scale usually have magnetic moments
in random directions, and therefore do not produce a net macroscopic magnetic
moment. However, when this object is placed in an external magnetic �eld ~B0 ,
the torque exerted upon the magnetic moments of the atoms try to rotate them.
The object thus gains a macroscopic magnetic moment.

The net magnetic moment per unit volume is called magnetization :

~M =

∑
i ~mi

V
(20.13)

The magnetic �eld generated by this magnetization is found to have the value
~BM=µ0 ~M . Here, µ0 is the magnetic permeability of free space that we de�ned
earlier.

Therefore, the net magnetic �eld for a material medium is as follows:

~B = ~B0 + µ0 ~M

Let us write this expression as follows to bring the contributions to magnetic �eld
in the same dimension:

~B = µ0

~B0
µ0

+ ~M


The �rst term in the brackets is the contribution of external currents to the
magnetic �eld inside of the matter, but it is written in the magnetization dimension.
This term is called the magnetic �eld strength vector and is indicated with ~H :

~H =
~B0
µ0

(20.14)

Accordingly, the magnetic �eld inside the material can be written as follows:

~B = µ0
(
~H + ~M

)
(20.15)

If there is no magnetization in the medium, in other words, if ~M = 0 , this
expression gives the magnetic �eld ~B0 in free space.
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Paramagnetism and Diamagnetism
The magnetic moments of the electrons in a given atom usually cancel each

other out and do not generate a net magnetic moment. However, some materials
(aluminum, platinum, calcium, sodium, etc.) have a non-zero atomic magnetic
moment. The torque generated when these types of materials are placed in an
external magnetic �eld will try to rotate the magnetic moment in the direction of
the �eld, and a contribution that increases the external magnetic �eld will thus be
generated. This is called paramagnetism.

Figure 20.15: The change of
magnetic �eld in paramagnetic
and diamagnetic media.

On the other hand, in certain other materials (gold, silver, copper, lead, etc.),
although the magnetic moment is zero, an opposing reaction is given when they
are placed in an external magnetic �eld. The orbit of the electrons changes and a
magnetic moment is generated again. However, this magnetic moment gives a
contribution that reduces the external magnetic �eld. This is called diamagnetism.

Figure 20.15 shows the change in magnetic �eld in these two types of medium.
Magnetic �eld increases in a paramagnetic medium (dense �eld lines) and de-
creases in a diamagnetic medium (sparse �eld lines).

In both types of magnetization, the magnetization vector ~M of the medium
is proportional to the magnetic �eld strength vector ~H :

~M = χm~H

The dimensionless constant χm here is called magnetic susceptibility. χm is
positive for paramagnetic media and negative for diamagnetic media.

Accordingly, if we write Eq. (20.15), which we found above for magnetic �eld
~B ,

~B = µ0
(
~H + ~M

)
= µ0 (1 + χm) ~H

Just as we de�ned ε to replace ε0 for the electric �eld, here we de�ne the
magnetic permeability of the medium, indicated with µ , as follows:

µ = (1 + χm) µ0 (20.16)

Depending on the type of medium,

in a paramagnetic medium : µ > µ0

in a diamagnetic medium : µ < µ0

We thus �nd the expression for ~B that takes into account the magnetic properties
of the medium:

~B = µ ~H (20.17)

Ferromagnetism
The magnetism of paramagnetic and diamagnetic materials occurs only when

an external magnetic �eld is applied. The magnetization disappears when the
external magnetic �eld is removed.

However, in �ve metals (iron, nickel, cobalt, gadolinium and dysprosium) and
certain oxide alloys, magnetism does not disappear when the external magnetic
�eld is removed. This permanent magnetization is called ferromagnetism. Fer-
romagnetic materials are used in the structure of credit cards, computer memories,
speakers, motor cores, compasses, etc.
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Ferromagnetic materials have very strong magnetism. Their magnetization
values M can be more than 1000 times compared to paramagnetic materials.

However, this magnetization continues until a certain critical temperature,
called the Curie temperature. (Curie temperature for iron is 770 ◦C .) When
this temperature is exceeded, the material again returns to the paramagnetic
phase with a sudden phase transition.

There is no satisfactory classic explanation for ferromagnetism; one needs
quantum theory for that. Let us brie�y provide some essential concepts here as
information.

When the microscopic structure of ferromagnetic materials is examined, it is
observed that it consists of small regions where magnetic moments of the atoms
are aligned together. These regions are called domains (Figure 20.16). Although
these domains have a net magnetism, they do not lead to a net magnetism, because
each one is in a random direction. When placed in an external magnetic �eld,

Figure 20.16: Ferromagnetic
domain structure in the NdFeB
crystal.

the domains in the direction of the �eld are observed to enlarge and those in the
other directions are observed to shrink. In other words, the domain walls move
so as to increase the net magnetization.

A very interesting change occurs in magnetism when we place a ferromagnetic
material in an external magnetic �eld B0 (Figure 20.17). As the external �eld B0
is increased, the magnetization M also increases (curve ab in the �gure). This
increase continues up until a value called the saturation (point b ). At this point,
the magnetic moments of all of the atoms are in parallel with the external �eld
and no further increase takes place.

Then, when B0 is decreased, this time the value of M decreases along a
di�erent path (curve bc ). As shown in the �gure, although B0 = 0 at point c , a
permanent magnetization value Mr , called remanence, remains. If the external

Figure 20.17: Hysteresis curve
of ferromagnetic magnetization
as a function of applied mag-
netic �eld B0 .

magnetic �eld is reversed, (curve cd ), magnetization also decreases and forms in
the reverse direction, slightly delayed. When we start to reduce the magnitude
of the external �eld in the negative direction (curve de ), this time, a permanent
magnetization occurs in the reverse direction (point e ). We thus observe a closed
curve with di�erent forward and backward paths. This is called a hysteresis
curve.

The hysteresis curve also explains why ferromagnetic materials are used in
memory chips. As seen in the curve, the magnetization value of the ferromagnetic
material has the value Mr if the magnetic �eld is reduced in one direction and
the value −Mr if reduced in the other direction. In other words, it has a memory
and remembers how it reached zero magnetic �eld.
Earth’s Magnetic Field

Earth’s magnetic �eld is what directs the needle of a compass towards the
North Pole. Measurements show that the Earth has an average magnetic �eld of
10−4 T . Examining the distribution of this �eld from space, we can see that it acts
as if a giant magnet was placed at the center of the earth. However, note that the
North pole of this magnet (N) is at the geographic South pole (Figure 20.18). In
other words, the magnetic �eld lines come out of Earth’s South pole and merge
at the North pole. The North pole of a compass can only be attracted to the

Figure 20.18: The Earth is a gi-
ant magnet, with the N-pole lo-
cated at the south.

geographical North in such a case. The magnetic �eld of the Earth is not exactly
parallel to the surface and also has a component that is perpendicular to the
surface.
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The magnetic poles where the �eld lines converge do not coincide with the
geographical North and South Poles. The location of the magnetic pole varies
with time. Research on rocks show that they vary over 1000-year periods. For
example, according to measurements conducted in 2005, the magnetic North Pole
was located around Ellesmere Island in Northern Canada, with latitude 82.7°N
(north) and longitude 114.4°W (west), has been shifting towards Russia since then.
Magnetic �eld also shows local variations on Earth. The magnetic �eld of every
region has been mapped for use in maritime and air transportation.Figure 20.19: Homing pigeons

can �nd their home from thou-
sands of miles away. It has been
established that they use small
magnetic crystals in their beaks
to detect Earth’s magnetic �eld.

The source of Earth’s magnetic �eld is one of the greatest mysteries in science.
At �rst, it was considered that layers of iron and nickel at the center of the Earth
were the source; however, we know that ferromagnetism disappears at very
high temperatures. Today, it is considered to be caused by convection currents
generated by electrically charged underground molten lava.

Multiple-choice Questions

1. Which of the following are the source of magnetic �eld?
I. Magnetic charges.

II. Currents.
III. Magnetic moments of atoms.
(a) All (b) I & II (c) I & III (d) II & III

2. Which of the following are correct?
I. Parallel currents repel each other.

II. Anti-parallel currents attract each other.
III. Parallel currents attract each other.
IV. Anti-parallel currents repel each other.
(a) I & II (b) III & IV (c) I & IV (d) II & III

3. By what factor does the magnetic �eld increase when
the current �owing through an in�nite wire is doubled?

(a) No change (b) 2 (c) 4 (d) 1/2

4. The radius of a current-carrying loop is doubled. By
what factor will the magnetic �eld at the center of the
loop increase?

(a) No change (b) 2 (c) 4 (d) 1/2

5. What is the magnetic �eld at a 1 m distance from a
straight wire carrying 1 A in current?
(a) 1×10−7 T (b) 2×10−7 T (c) 3×10−7 T (d) 4×10−7 T

6. What is the expression for the magnetic �eld at the cen-
ter of a circular current loop?
(a) k′I/a (b) k′I/a2 (c) 2k′I/a (d) 2πk′I/a

7. In which of the following �gures are the forces between
parallel currents shown correctly?

(a) I & II (b) I & III (c) II & III (d) II & IV

8. What is the force exerted upon 1 m in length of one of
two parallel wires separated by 1 m and each carrying
1 A of current?

(a) 1 × 10−7 N (b) 2 × 10−7 N (c) 3 × 10−7 N

9. Which of the following is Ampère’s law?
(a) The integral of the magnitude of the magnetic �eld
over any closed curve is proportional to the net current
enclosed by the curve.
(b) The integral of the tangential component of the
magnetic �eld over a straight line is proportional to
the net current in that wire.
(c) The integral of the magnetic �eld over any volume is
proportional to the net current enclosed by the volume.
(d) The integral of the tangential component of the
magnetic �eld over any closed curve is proportional to
the net current enclosed by the curve.

10. By what factor does the magnetic �eld increase when
the current of a solenoid is doubled?

(a) No change (b) 2 (c) 4 (d) 1/2

11. By what factor does the magnetic �eld increase when
the number of windings per unit length of a solenoid is
doubled?

(a) No change (b) 2 (c) 4 (d) 1/2

12. Which of the following is correct?
(a) Magnetic �eld is zero inside of a solenoid.
(b) Magnetic �eld is zero outside of a solenoid.
(c) Magnetic �eld is constant outside of a solenoid.
(d) Magnetic �eld is in�nite outside of a solenoid.
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13. What is the expression for the magnetic �eld of a
solenoid?
(a) 1

2µ0nI2 (b) µ0nI2 (c) µ0nI (d) µ0n2I

14. Which of the following produces a uniform magnetic
�eld?

(a) Straight wire current.
(b) Circular current loop.
(c) Solenoid.
(d) Toroid.

15. Which of the following is correct in terms of the magne-
tization properties of matter?

(a) For paramagnetic materials: µ > µ0
(b) For diamagnetic materials: µ < µ0
(c) For ferro magnetic materials: µ � µ0
(d) All of the above.

16. Which of the following is the source of the magnetiza-
tion property of materials?

I. The orbital motion of atomic electrons.
II. The spin property of electrons.

III. The merging of magnetized domains.
(a) I (b) I & II (c) I & III (d) I, II & III

17. Which of the following are correct?
I. Magnetic �eld increases inside paramagnets.

II. Magnetic �eld increases inside diamagnets.
III. Magnetic �eld decreases inside paramagnets.
IV. Magnetic �eld decreases inside diamagnets.

(a) I (b) I & II (c) I & III (d) I & IV

18. Which of the following are correct for ferromagnetism?
I. Magnetism increases with temperature.
II. Magnetism decreases with temperature.

III. Magnetism disappears above a certain temperature.
(a) I (b) II (c) I & III (d) II & III

19. Which of the following is correct when a ferromagnetic
material is placed inside of an external magnetic �eld?

(a) It gets magnetized in the direction of the external
magnetic �eld.
(b) Magnetization increases with the external magnetic
�eld.
(c) Magnetization does not increase after a certain

saturation value.
(d) All of the above.

20. Which of the following are correct for Earth’s mag-
netism?

I. The geographic North Pole is the magnetic North
Pole.
II. The geographic South Pole is the magnetic North

Pole.
III. The locations of the magnetic poles vary over time.
IV. The locations of magnetic poles do not vary over
time.
(a) I & III (b) II & III (c) I & IV (d) III & IV

Problems

20.2 Magnetic Field Calculations

20.1 (a) What is the magnetic �eld at a distance of 1 cm
from a straight wire carrying a current of 10 A? (b) How
much current should be �owing through a loop current with
a radius of 1 cm such that a 1 mT magnetic �eld is generated
at its center? [A: (a) 0.2 mT , (b) 16 A .]

Problem 20.2
20.2 A part of an in�nite wire carrying a current I = 50 A
is bent into a circle with radius a = 1 cm , as shown in the
�gure. Find the magnitude and direction of the magnetic �eld

at point P located at the center of the circle.
[A: 4 mT , out of the paper .]

Problem 20.3
20.3 In the �gure, there is a 2 cm distance between the anti-
parallel currents I1=300 A and I2=50 A . (a) Calculate the
total magnetic �eld at the midpoint A between the wires.
(b) Calculate the magnetic �eld at point B located 1 cm away
from the wire I2 . [A: (a) 7 mT , (b) 1 mT .]

20.4 A current of 1 A is �owing through a conducting cir-
cular loop with a radius of 1 m . (a) What is the magnitude
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of the magnetic �eld located at the center of the loop? (b) At
what point along the axis will the magnetic �eld drop down
to a quarter of its value at the center?

[A: (a) 6.3 × 10−7 T , (b) h = 1.2 m .]

Problem 20.5
20.5 Helmholtz coils. Two identical circular loops, each
with radius a=1 cm and carrying the same I=100 A -currents
in the same direction, are placed on an axis with 2a distance
in between, as shown in the �gure. Calculate the magnetic
�eld at the midpoint between the loops. (This assembly is
used to obtain uniform magnetic �eld in a small region.)

[A: 4.4 mT .]

Problem 20.6
20.6 The currents on two straight wires perpendicular to the
plane of the paper, as shown in the �gure, are I1 = 1 A and
I2 = 5 A , respectively, and are separated by 1 m . At what
point on the x -axis (left, center, right) will the total magnetic
�eld be zero? [A: 0.25 m on the left.]

Problem 20.7
20.7 The two straight wires perpendicular to the plane of the
paper, as shown in the �gure above, are separated by 6 mm
and have equal currents of I = 100 A in opposite directions.
Calculate the magnitude and direction of the total magnetic
�eld at point P at 4 mm in distance on the perpendicular
bisector of the currents. [A: 6.4 mT to the right.]

Problem 20.8
20.8 The two straight wires perpendicular to the plane of
the paper, as shown in the �gure above, are separated by
5 mm and have equal currents of I = 60 A . Calculate the
magnitude and direction of the total magnetic �eld at point
P , which forms a right triangle with the currents.

[A: 5 mT .]

Problem 20.9
20.9 The straight wire currents perpendicular to the plane
of the paper and located on the corners of a square with side
a = 1 mm are equal and have I = 10 A magnitude. Calculate
the magnitude and direction of the total magnetic �eld at
point P located at the center of the square. (Hint: The prob-
lem will not be as lengthy as it looks if you �rst determine
the direction of each magnetic �eld.)

[A: 8 mT to the right.]

Problem 20.10
20.10 The four straight wire currents on the plane of the
paper are equal and have magnitude I = 50 A . Calculate the
magnitude and direction of the total magnetic �eld at point
P located at the center of the square with a side length of
20 cm . [A: 0.2 mT into the paper.]

20.3 Force Between Parallel Currents

Problem 20.11
20.11 In the �gure, wires perpendicular to the plane of the
paper constitute the corners of an equilateral triangle with
a side length of 1 mm . Since I1 = I2 = I3 = 60 A , calculate
the magnitude and direction of the total force exerted upon
1 m of length on the wire with current I3 .

[A: 1.2 N upward.]

Problem 20.12
20.12 In the �gure, wires perpendicular to the plane of the
paper constitute the corners of a square with a side length of
1 mm . Since the magnitude of the current passing through
each wire is I = 100 A , calculate the magnitude and direction
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of the total force exerted upon 1 m of length on the 4th wire.
[A: 1.4 N towards the inside from the diagonal.]

Problem 20.13

20.13 A current I2=10 A �ows through the rectangular loop
laying on the same plane as the straight wire carrying a cur-
rent of I1=50 A as shown in the �gure. The distance of the
loop to the near side is a=1 cm , its width is b=2 cm and
length is c=60 cm . Calculate the net force exerted upon the
loop. [A: 0.004 N to the left.]

20.4 Ampère’s Law

20.14 A current I �ows through an in�nite cylindrical shell
with radius R . Calculate the magnetic �eld at a distance r
inside and outside of the cylinder.

[A: B = 0 inside and B = 2k′I/r outside.]

Problem 20.15
20.15 Of the two coaxial in�nite cylindrical shells shown
in the �gure, the one with radius a carries a current 3I and
the one with radius b carries a current I in the opposite
direction. Calculate the magnetic �eld in all three regions.

[A: B = 0 for r < a , B = 6k′I/r for a > r > b , B = 4k′I/r
for r > b .]

Problem 20.16
20.16 The total current I is evenly distributed inside of the
in�nite cylindrical region with inner radius a and outer ra-
dius b as shown in the �gure. Calculate the magnetic �eld in
all three regions.

[A: 0 for r < a , B = 2k′I
r2 − a2

(b2 − a2)r
for a < r < b ,

B = 2k′I/r for r > b .]

?
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FARADAY’S LAW –

INDUCTION

Solar-powered aircraft Helios
cruising the Hawaiian skies.
Developed by NASA, the so-
lar batteries located on the
wings of this plane supply
each of its 14 electric motors
with 1.5-kilowatt (2 HP) of
power.
What physics laws govern
the operation of electric mo-
tors and generators? We will
�nd the answer to these ques-
tions in Faraday’s law.

Towards the mid-19th century, it was established that electric currents would
produce magnetic �elds. Therefore, many people naturally asked the question,
“Could magnetic �eld also lead to electric �eld?”. Finally, in 1831, the British
scientist Michael Faraday and the American scientist Joseph Henry succeeded in
producing electric current through a changing magnetic �eld. No revolution has,
to date, been greater than this one. Motors, generators, transformers, wireless
energy, signal transmission, etc. were all developed as a result of this discovery.

The discovery of magnetic induction completed another great circle in science.
The British scientist James Clerk Maxwell was able unify electricity and mag-
netism in a single electromagnetic theory in which electrics and magnetism
induce and a�ect each other.
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21.1 FARADAY’S LAW

A current is observed to be induced in a conducting loop when we move a bar
magnet near it (Figure 21.1a). No current is induced if the magnet is stationary,
regardless of its strength. This experiment shows us that current �ows when
there is a change in the magnetic �eld lines passing through the loop.

Figure 21.1: Two methods of in-
ducing current: (a) A current is
induced when a magnet moves
near a solenoid. (b) A current
is induced in one of two adja-
cent circuits when the current
changes in one.

Moving a bar magnet is not the only way to change the magnetic �eld lines.
Two circuits are shown in Figure 21.1b. The �rst circuit has a loop connected to a
battery and, in the other circuit, there is a loop connected solely to a galvanometer.
When the switch in the �rst circuit is closed, a brief current is observed in the
second circuit. Here, a change in the magnetic �eld of the �rst loop also produces
an electric current in the second loop.

Induction of current means that an emf is induced as if a battery were con-
nected to the loop. In order to understand this e�ect, let us consider that we are
moving a conducting rod with velocity ~v towards the right on a plane perpen-
dicular to the magnetic �eld (Figure 21.2). Recall the expression for magnetic
force:

~F = q (~v × ~B)

As the force ~F exerted upon a free charge +q inside of the conductor will be
Figure 21.2: Conducting rod
moving in a magnetic �eld.

perpendicular to both the magnetic �eld and the velocity, it will be towards the
top of the conductor. The +q charges will thus gather at the top of the conductor
and leave a negative end at the bottom. A potential di�erence will thus be induced
between the two ends of the conductor.
Faraday’s Law

We had discussed the concept of �ux in examining Gauss’ law in electrics.
Magnetic �ux is also de�ned here as the number of magnetic �eld lines crossing
an area A enclosed by a conducting wire, as follows:

ΦB =

∫
A

B dA cos θ (Magnetic �ux) (21.1)

The angle θ here is the angle between the magnetic �eld vector and the surface
normal n̂ (Figure 21.3).

Faraday’s law states that a variation in magnetic �ux induces an emf:

Figure 21.3: Magnetic �ux
crossing a surface enclosed by
a conductor.

Faraday’s Law

The potential di�erence induced in a circuit is directly propor-
tional to the time rate of change of the number ofmagnetic �eld
lines passing through the circuit:

E = −
dΦB

dt
(21.2)
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We shall explain the meaning of the negative sign in this expression using Lenz’s
law.

Faraday’s law includes several ways in which the magnetic �ux may vary:
• The magnetic �eld B may vary.
• The surface area A may vary.
• The angle θ between the surface and the magnetic �eld may vary.
• All or some of the above may vary simultaneously.

Lenz’s Law
The negative sign (−) in Faraday’s law is placed symbolically in the equation.

This sign tells us the direction of the emf or that of the current to �ow through
the circuit. This direction is determined by Lenz’s Law:

Lenz’s Law

The current produced in a loop by the induced emf �ows in a
direction such that its magnetic �eld opposes the change in orig-
inal magnetic �ux.

In order to apply Lenz’s law, let us �rst recall the magnetic �eld at the center
of a circular loop carrying a current. According to the right-hand rule, when
the four �ngers are curved in the direction of current I , the thumb points in the
direction of the magnetic �eld B .

Now let us consider the bar magnet in Figure 21.4a. The magnetic �ux crossing
the surface of the loop increases as the magnet approaches. The current opposing
this must be induced in such a direction that its magnetic �eld B′ is generated
in the opposite direction, and thus decreases the increasing �ux. According to
the right-hand rule, this current I′ should be in the direction shown in the �gure.
Likewise, the current produced will be in the opposite direction as the bar magnet
moves away.

Figure 21.4: (a) Magnetic �ux
increases as the bar magnet ap-
proaches, therefore the induced
current should be in the direc-
tion that generates an opposing
magnetic �eld. (b) The current
I′ in the bottom circuit will be
induced in the opposite direction
as the current I increases in the
top circuit, and in the same direc-
tion as I decreases.

Let us again consider two loops a�ecting each other, as shown in Figure 21.4b.
If the current I increases in the loop connected to the battery, its magnetic �eld B
will increase. The induced current to oppose this in the second loop will generate
a current I′ with a magnetic �eld B′ in the opposite direction. Likewise, if the
current I and �eld B decrease, the magnetic �eld in the second loop should be
in the same direction so as to compensate for this decrease. Therefore, a current
I′ is induced in the same direction.

Let us now look at some examples to see how Faraday’s law and Lenz’s law
are applied.
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Example 21.1

The conducting loop with resistance R = 1 Ω , as shown in the
�gure, is located in a magnetic �eld B directed into the plane
of the paper.
(a) The magnetic �eld starts to increase as B = 0.1 t (tesla) ,

while the radius of the loop is constant at a=3 m . Deter-
mine the value and direction of the current induced in the
loop.

(b) When the magnetic value is constant at B=0.1 , the radius
of the loop starts to increase as a = 3t (meters). Find the
value and the direction of the current at t=1 s .

Answer
We write Eq. (21.2) for Faraday’s law:

E = −
dΦB

dt
The magnetic �ux ΦB here is calculated using Eq. (21.1). As
B is constant and parallel to the surface normal, we get

ΦB = BA cos 0◦ = πa2 B
We write the magnetic �eld as B = 0.1t , as a function of time,
and take its derivative (we ignore the negative sign):

E =
d[πa2(0.1t)]

dt
= 0.1πa2

We use Ohm’s law to �nd the current generated in the circuit
by this electromotor force:

I = E/R = 0.1πa2/R
I = 0.1 × 3.14 × 32/1 = 2.8 A

The direction of the current should be such as to oppose the
increase in the magnetic �eld, in other words, its own mag-
netic �eld B′ should be out of the paper. According to the
right-hand rule, the current on the loop should be counter-
clockwise.
(b) This time, the variation in magnetic �ux is caused by the
increase in the cross-section area A :

ΦB = BA = B(πa2) = πB(3t)2

The induction emf is calculated using Faraday’s formula:

E =
dΦB

dt
=

d(9πBt2)
dt

= 18πBt

We use Ohm’s law to �nd the induced current at time t=1 s :
I = E/R = 18πBt/R = 18×3.14×0.1×1/1 = 5.7 A

Again, according to Lenz’s law, the current will be counter-
clockwise.

Example 21.2

The rectangular loop with the dimensions given in the �gure
is located in a region where a uniform magnetic �eld B=1 T
in the +y direction is present. The loop plane has a 37◦ angle
with the x -axis. The magnitude of the magnetic �eld is reduced
down to zero in 0.3 s . Calculate the value and direction of the
current induced in the loop. The resistance of the loop is R=4 Ω .

Answer We write the expression of the magnetic �ux cross-

ing A :
ΦB = BA cos θ

Here, θ is the angle between the magnetic �eld and the sur-
face normal. As seen in the �gure, the angle between ~B and
the loop surface is 53◦ , and therefore the angle with the nor-
mal perpendicular to the surface is θ = 37◦ . We therefore
calculate the magnetic �ux at the start:

ΦB = 1 × (2 × 3) × cos 37◦ = 5.2
We apply Faraday’s law:

E = ∆ΦB/∆t = (5.2 − 0)/0.3 = 17.4 V
We use Ohm’s law to �nd the induced current:

I = E/R = 17.4/4 = 4.4 A
As magnetic �ux is decreasing, according to Lenz’s law, the
direction of the magnetic �eld induced on the loop should
be in a direction that prevents the decrease in ~B , in other
words, in the same direction. Therefore, the current will be
downward in the front side.

Example 21.3

The rectangular loop in the �gure has a resistance R=2 Ω and
is located in a region where B=0.2 T in magnetic �eld directed

into the plane of the paper is present. The side of the loop with
length L=50 cm is pulled to the right at velocity v=4 m/s . Find
the value and direction of the induced current.

Answer
In this problem, the variation in the magnetic �ux crossing
the loop is caused by the change in the surface area of the
loop. The side with length L of the rectangular loop is con-
stant and the length of the other side varies as x = vt . Let us
write the magnetic �ux:
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ΦB = BA = BL(vt)
We take the derivative of this expression with respect to time
t and calculate the current from the emf using Ohm’s law:

I =
E

R
=

1
R

d(BLvt)
dt

=
BLv
R

I = 0.2 × 0.5 × 4/2 = 0.2 A

The magnetic �ux crossing the loop is increasing. Therefore,
the magnetic �eld generated by the induction current shall
be in the direction that decreases this, thus out of the plane
of the paper. The current that gives such a magnetic �eld
should be counterclockwise.

Example 21.4

The number of windings per unit length of the solenoid shown
in the �gure is n=500 turns/meter and the current it carries
varies with time as I=5 e−t (ampere). A conducting loop with
radius a=50 cm placed inside of the volume of the solenoid has
resistance R=1 Ω . Determine the value and direction of the
current �owing through the loop at t=0 s .

Answer
As we discussed in Chapter 20, the magnetic �eld inside of a
solenoid is uniformly distributed and given in Eq. (20.12):

B = µ0n I
The magnetic �ux crossing the loop with radius a is:

ΦB = BA = µ0n I (πa2) = µ0nπa2 I
We use Faraday’s law to �nd the induction emf:

E =
dΦB

dt
= µ0nπa2 dI

dt
The current I decreases exponentially. Its derivative will be
equal to itself:

dI
dt

=
d
dt

(
5 e−t

)
= −5 e−t

The value of this derivative at t = 0 s will be 5 (we ignore
the negative sign). We substitute this value and calculate the
current I′ induced in the loop:

I′ =
E

R
=
µ0nπa2

R

∣∣∣∣∣dI
dt

∣∣∣∣∣
t=0

I′ =
4π × 10−7 × 500 × π × 0.52 × 5

1
I′ = 0.0025 A = 2.5 mA

The direction of this current I′ should be in the direction
that compensates the decrease in the magnetic �eld of the
solenoid, in other words, in the same direction as the current
I .

Example 21.5

In the �gure, a rectangular loop with dimensions a=1 m and
b=2 m is placed in a uniform magnetic �eld B=0.1 T directed
into the paper. The loop is rotating around its axis with an
angular velocity of ω=3 rad/s . Calculate the current induced
on the loop with resistance R=1 Ω as a function of time t .

Answer
We use the formula for the magnetic �ux crossing a loop:

ΦB = BA cos θ
B and A are constant here, but the angle θ varies as θ = ωt
depending on the angular velocity ω . We �nd the expression
for the induction emf using Faraday’s law:

E =
dΦB

dt
= BA

d(cosωt)
dt

= −ωBA sinωt

We use Ohm’s law to �nd the current without considering
the negative sign:

I =
E

R
=
ωBA

R
sinωt

We substitute the numerical values:
I =

3 × 0.1 × (1 × 2)
1

sin 3t

I = 0.6 sin 3t

21.2 GENERATORS AND TRANSFORMERS

Generators
A device that converts mechanical energy into electric energy is called a

generator or a dynamo. The energy of water falling from a height in hydroelectric
power plants and the energy of steam in thermoelectric and nuclear power plants
are converted into electric power.

Figure 21.5: Diagram of a sim-
ple generator.

When examining the electric motor in Chapter 16, we discussed how a torque
was exerted on a current-carrying loop inside of a magnetic �eld. Generators
perform the opposite of that which motors do, in other words, electricity is
generated by a loop rotating in a magnetic �eld.
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Figure 21.5 shows the diagram of a simpli�ed alternating current generator.
A rectangular loop with cross-sectional area A is rotated between the poles of a
magnet. The magnetic �eld B of the magnet is constant in the indicated direction.
The variation in the magnetic �ux crossing the loop is caused only by the change
in angle θ due to the rotational motion. Let us write the magnetic �ux for N
windings:

ΦB = NBA cos θ

If the loop rotates with angular momentum ω , the angle will increase over time
as θ = ωt . The magnetic �ux thus varies sinusoidally:

ΦB = NBA cosω t

Applying Faraday’s law, the derivative of �ux ΦB gives the induction emf:

E = −
dΦB

dt
= NBAω sinωt (21.3)

The sinusoidal variation of this current in time is given in Figure 21.7, with the
Figure 21.6: The angle θ be-
tween the loop plan and the
magnetic �eld.

various directions of the loop plane indicated. This is an alternating current, in
other words, it varies between the values ±NBAω during a full 360◦ rotation of
the loop, positive in the �rst half and negative in the second half.

Figure 21.7: The values of the
sinusoidal current depending on
the direction of thee loop in the
generator.

Alternating current is the most practical type of current in energy transmis-
sion, as it can be supplied to circuits directly as it is generated. A commutator
must be used as it is in motors, if direct current needs to be generated from this
mechanism.
Transformers

The electricity generated in all kinds of power plants must be transmitted
to the point of use. Heat losses must be minimized during transmission. If the
resistance on the transmission lines is R , the heat loss will be RI2 , proportional
to the square of the current. Therefore, it is necessary to transmit the power with
lower currents, or higher voltages, according to the power expression P=V I .
Hence, very high values of voltage such as 100 000–500 000 Volts are carried by
high voltage lines coming from power plants. This voltage is then further reduced
in cities and, in the end, brought down to the 220 or 120 volts used in homes
and the industry. Another advantage of alternating current is that it is easy to
reduce or increase the voltage. The device that performs this function is called a
transformer.
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Figure 21.8 shows the structure of a transformer. Two coils of wire are wound
around a core of iron ring. The �rst coil, called the primary, consists of N1
windings and the second coil, called the secondary, consists of N2 windings.

Suppose that a current I1 is �owing through the �rst circuit. A very high
percentage of the magnetic �eld to be generated by this current will be concen-
trated inside of the core and almost all of it will pass through the secondary coil
on the other side. Accordingly, the �ux crossing each winding will be the same
everywhere: Figure 21.8: The primary and

secondary windings of a trans-
former.ΦB1 = ΦB2 = ΦB

Now, if we write the total emf induced by the varying current for both circuits
according to Faraday’s law, we get:

E1 = N1
dΦB1

dt
E2 = N2

dΦB2

dt

As ΦB1 = ΦB2 at each time t , their derivatives will also be equal. From here, we
obtain the following formula between the emf of both circuits:

Figure 21.9: A transformer
densely wound to prevent mag-
netic �ux losses.

E2 =
N2

N1
E1 (21.4)

This formula shows how the emf varies in the secondary circuit depending on
the number of windings. For example, if we wish to double the voltage, we need
to have N2 = 2N1 , in other words, the number of windings in the second circuit
should be double. Likewise, the number of windings in the second circuit should
be lower to reduce the voltage.

Energy losses are inevitable in a real transformer. Transformers therefore
heat up when operating and must be cooled. There are several causes for these
losses. First, the �ux will be less in the secondary circuit if the magnetic �ux is
not fully inside of the ferromagnetic core. Transformers are wound very densely
and without any gaps to prevent this.

Figure 21.10: Eddy currents in-
duced inside the transformer.

Another cause of energy losses is eddy currents. Eddy currents in random
directions are induced in the ferromagnetic iron core when the transformer
operates. These moving charges also take away some of the energy. To prevent
the forming of eddy currents, the iron core is laminated, in other words, made of
many insulated iron sheets.

Example 21.6

The rotating coil of a generator is made of N windings, each
with cross-section area of 20 cm2 , and is rotating with an angu-
lar speed of 6000 rpm inside of a 0.5 T magnetic �eld. What
is the minimum number of windings required such that the
maximum voltage generated by the generator is 12 V?

Answer We use Eq. (21.3) to �nd the emf produced by the
generator:

E = NBAω sinωt
We calculate the number of windings N from the maximum
value ( sinωt=1 ) of this sinusoidal voltage:

N =
E

BAω
=

12
0.5 × 0.0020 × (6000 × 2π/60)

N = 19.1
If we convert this into a whole number, we get the number
of required windings as N = 20 .

Example 21.7

The primary coil of a transformer has 200 windings and its
secondary coil has 50 windings. What will a 240-volt and 20-

ampere current entering the transformer be at the output?

Answer The relation between the input and output voltages
of the transformer is found using Eq. (21.4):
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E2 =
N2

N1
E1

We calculate the output voltage from this formula:

E2 =
50

200
× 240 = 60 V

Considering that an ideal transformer has no power loss, the
power at the input and output are equal:

E1 I1 = E2 I2

From here, we �nd the output current to be I2 = 80 A .

Example 21.8

Power loss on transmission lines. 1 MW (megawatt) in
power generated at a dam is transmitted to a city using two
di�erent methods:
(a) What will the power converted into heat be on the 1 Ω

resistance of the line when this power is transmitted at a
voltage of 5000 V = 5 kV?

(b) What will the power converted into heat be on the 1 Ω re-
sistance of the line when this same power is �rst increased
to a voltage of 500 000 V = 500 kV using a transformer?

Answer
(a) The general power formula was found in Section 18.4:

P = V I
Also, the power converted into heat on a resistor R was found
to be

P′ = R I2

Accordingly, the current I1 when the power P is transmitted
at the voltage V1 is:

I1 =
P
V1

=
106

5000
= 200 A

We calculate the power converted into heat with this current
on the resistor R :

P′1 = R I2
1 = 1 × 2002 = 40 000 W = 40 kW

(b) We repeat the same calculation when the same power is
transmitted at voltage V2=500 kV :

I2 =
P
V2

=
106

5 × 105 = 2 A

We calculate the power converted into heat with this current
on the resistor R :

P′2 = R I2
2 = 1 × 22 = 4 W

The power loss is less with transmission at higher voltage.

21.3 INDUCTANCE – MAGNETIC ENERGY

Let us consider two coils that are very close to each other. Let us focus on
the magnetic �ux ΦB2 passing through the second coil and due to the current I1
in the �rst coil. When the current I1 is varied, the �ux ΦB2 will also vary and,
according to Faraday’s law, an emf E2 will be induced in the second coil:

E2 = −
dΦB2

dt

If the geometric shapes and positions of the coils are constant, the induced
Figure 21.11: Magnetic �ux be-
tween two coils.

magnetic �ux will be proportional only to the current I1 :

ΦB2 = M21 I1 (21.5)

We can see this feature from the expressions for the magnetic �eld of a coil and
solenoid that we found earlier. In this case, the value of the emf induced in the
second circuit can be written as follows, in terms of I1 instead of ΦB1 :

E2 = −M21
dI1

dt

The coe�cient M21 here, into which we gathered all of the constants is called
the mutual induction coe�cient or mutual inductance. Its unit is 1 T·m2/A =

1 Henry (H) . This coe�cient is dependent on the geometric structure of the given
current loops, the number of windings and the µ permeability of the medium.

We can use the same reasoning for the �ux of the second coil on the �rst
one. The emf value E1 induced on the �rst coil by the variation in the current I2
�owing through the second coil, will be,

E1 = −M12
dI2

dt
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It can be proven that these two coe�cients M21 and M12 are equal even if the
coils are not identical. We accept this result here without proof and de�ne a single
mutual inductance for both coils:

M21 = M12 = M (Mutual inductance)

Thus, instead of the induction �ux ΦB , we express the induction emf values in
terms of the directly measurable current:

E1 = −M
dI2

dt
and E2 = −M

dI1

dt
(21.6)

Self-inductance
When you shut down the current of a building by turning o� the main lever

switch, you will notice that a spark jumps between the two poles of the switch.
How can an emf of about 1000 Volts be induced in a circuit that is switched o�,
when it is not possible for a spark to jump at 220 Volts? Faraday’s law holds the
answer to this. As the circuit is switched o�, during that small duration, an emf
opposed to the decrease in magnetic �ux is induced on itself. We describe this
with the concept of self-induction.

Consider the simple circuit in Figure 21.12 consisting of a coil with only
two windings. When the switch is closed, the current and its magnetic �eld are
constant. You will note that the magnetic �ux of each winding passes through
the other winding. Now, suppose that we open the switch and cut the current.
The magnetic �eld of the second winding will decrease, and thus its magnetic

Figure 21.12: A circuit with
two windings to understand self-
induction.

�ux crossing the �rst winding will also decrease. According to Faraday’s law, an
opposite emf will be induced in the �rst winding against this decrease. As both
windings are part of the same circuit, we can consider this induction e�ect as the
self-induction of the circuit.

Every current loop opposes the variation in the current that it carries. It does
this by producing an opposing induction emf. This emf value is proportional to
the variation in the current I �owing through the coil. Likewise, if we gather all
of the geometric factors together and write the magnetic �ux �owing through
the coil as proportional to current I , we get

ΦB = L I (21.7)

Thus, the self-induced emf generated in the circuit will be proportional to
the time rate of change of the current:

E = −L
dI
dt

( L : Self-inductance) (21.8)

L is called the self-induction coe�cient or simply the inductance. Its unit is,
again, the Henry (H), as in mutual inductance.

In alternating current circuits, windings with a �xed inductance value are
used as a circuit component called the inductor and indicated with the sym-
bol . The potential di�erence between the terminals of an inductor
carrying a current I is

Vab = −L
dI
dt

(21.9)

The potential di�erence will be opposite to the current if the current is increasing
and in the same direction if it is decreasing.
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Magnetic Energy
In Chapter 18, the most general expression for energy in electric circuits was

found to be (equation 18.11):
P = V I

Using the expression that we found above for the potential di�erence between
the terminals of a coil carrying current I , we get

P = L I
dI
dt

The work performed on this coil during the time interval dt will be stored as an
increase in the potential energy of the coil:

dU = dW = P dt = L I
dI

@@dt
@@dt

dU = L I dI

When the current goes from an initial value of zero to a �nal value of I , the
magnetic energy stored in the coil will be the integral of this expression:

U = L
∫ I

0
I dI = 1

2 L I2 (Magnetic energy of a coil) (21.10)

This magnetic energy is stored in the coil and may later be returned to the circuit.

Example 21.9

(a) Find the expression for the inductance of a solenoid.
(b) Calculate the inductance of a solenoid with 500 windings,
20 cm in length and a 10 cm2 cross-section area.
(c) Calculate the energy stored when a 40 A current �ows
through this solenoid.

Answer
(a) We had found the expression for the magnetic �eld of a
solenoid in Chapter 20:

B = µ0nI

n is the number of windings per unit length and, for a
solenoid with length ` and N windings, it is n = N/` .
As the magnetic �eld is constant inside of the cross-section of
the solenoid, the magnetic �ux is calculated for N windings:

ΦB = NBA = N (µ0NI/`) A =
µ0N2A
`

I

The inductance was de�ned in Eq. (21.8) as:
ΦB = L I

We �nd the expression for inductance by comparing the last
two expressions:

L =
µ0N2A
`

(b) We substitute the numerical values in the expression L
as follows:

L =
4π × 10−7 × 5002 × 0.0010

0.20
L = 0.0016 H = 1.6 mH

(c) The energy stored in a coil was given with the formula
(21.10):

U = 1
2 L I2 = 1

2 × 0.0016 × 402 = 1.3 J

Example 21.10

A wire is wound N2 times around a solenoid with length ` ,
cross-section area A and N1 windings.

(a) Find the mutual inductance of the solenoid and the coil.
(b) Find the coe�cient M for N1=500 , N2=20 , `=10 cm

and A=40 cm2 .

Answer
(a) We write the magnetic �eld of a solenoid carrying a current
I1 :

B = µ0nI1 = µ0 (N1/`) I1

The �ux of this magnetic �eld �owing through a coil with
N2 windings is
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ΦB2 = N2BA =
µ0N1N2A

`
I1

The mutual inductance was de�ned in Eq. (21.5) as follows:
ΦB2 = M I1

We �nd the coe�cient M by comparing the last two formulas:

M =
µ0N1N2A

`
(b) M is calculated using the given numerical values:

M =
4π × 10−7 × 500 × 20 × 0.0040

0.10
M = 0.0005 H = 0.5 mH

21.4 RLC CIRCUITS

Let us recall the circuit components that we have examined thus far:

Resistor : R Vab = R I

Capacitor : C Vab =
q
C

Coil : L Vab = L
dI
dt

L and C components are not used in a direct current circuit, because no direct
current can �ow through a capacitor and the coil gives no reaction to a direct
current. However, these components are activated in alternating current circuits
and generate a potential di�erence when a current �ows through them.

The topic of alternating currents is very broad and simply cannot be examined
thoroughly in this course. We shall merely brie�y summarize some results here
using what we have learned.

Figure 21.13 shows L, R, C circuit components connected in series to an
emf source. In order to �nd the current �owing through this circuit, we add the
potential di�erences on each component by going from the positive pole of the
generator:

Figure 21.13: An RLC circuit.
Vad = Vab + Vbc + Vcd

E = L
dI
dt

+ R I +
q
C

We cannot use the equation in this form, as it includes both the unknown current
I and charge q . We take the derivate of the equation, and recalling that dq/dt = I ,
we get

dE
dt

= L
d2I
dt2 + R

dI
dt

+
1
C

dq
dt︸︷︷︸
I

Rearranging the terms, we get:

L I′′ + R I′ +
1
C

I =
dE
dt

(21.11)

This expression is a di�erential equation that gives the unknown current I(t) .
We can solve this equation and �nd the current if the emf function E(t) on the
right-hand side is given.

Before solving this equation, note a very important similarity: Recall the
equation x(t) giving the position of the mass when we examined damped and
driven oscillatory motion in mechanics (Eq. 9.30):

m
d2x
dt2 + b

dx
dt

+ k x = F(t)
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Comparing the two equations, we notice that the mass m in mechanics is replaced
by the coil L , the friction b is replaced by the resistance R and the spring k is
replaced by the capacitor 1/C . Let us remember the solutions that we found in
mechanics: The system makes a damped oscillation motion if there is no external
force ( F = 0 ). Likewise, resonance was observed when the frequency ω of the
external force was near the natural frequency.

Figure 21.14: Damped motion
in an RLC circuit.

The RLC circuit also has damped oscillation motion (Figure 21.14) and reso-
nance solutions, depending on the applied potential di�erence E(t) . This topic is
examined in more detail in courses on circuit analysis.

Multiple-choice Questions

1. According to Faraday’s law, the emf induced in a coil is:
(a) Proportional to the magnetic �eld crossing the coil.
(b) Proportional to the magnetic �ux crossing the coil.
(c) Proportional to the time rate of change of the mag-
netic �ux crossing the coil.
(d) Proportional to the cross-sectional area of the coil.

2. According to Lenz’s law, the direction of the current
produced by an induction emf is:

(a) Opposite to the current generating it.
(b) In the same direction as the current generating it.
(c) In opposite direction to the change in the current
generating it.
(d) In the same direction as the change in the current
generating it.

3. The current I �ows through the linear wire in the �g-
ure below. In which of the two conductor coils will an
induction emf be produced?

(a) A (b) B (c) A and B (d) None

4. In which of the following situations will an induction
emf be produced in a coil?
I. If the magnetic �eld crossing the coil varies.

II. If the surface area of the coil varies.
III. If the magnetic �eld is changing direction.
IV. All of the above.

(a) I & II (b) II &III (c) I & III (d) IV

5. The maximum value of the induction emf inducted on
a rotating coil in a magnetic �eld depends on which of
the following?
I. The magnitude of the magnetic �eld.

II. The surface area of the coil.
III. Angular momentum.

IV. All of the above.
(a) I & II (b) II & III (c) I & III (d) IV

6. The magnetic �ux crossing a coil is varying as ΦB=t3 +

2t2 (T·m2) . What is the emf induced at time t=1 s?
(a) 0 (b) 3 (c) 5 (d) 7

7. What will happen to the generated emf if the coil of a
generator rotates faster?

(a) It will increase.
(b) It will decrease.
(c) It will remain the same.
(d) It is impossible to tell.

8. When will an induction emf be induced in a coil?
(a) When a constant current �ows.
(b) When the current is maximum.
(c) When the current varies over time.
(d) When the current is zero.

9. Which of the following are correct for the inductance of
a solenoid?

I. It is directly proportional to the cross-section area.
II. It is directly proportional to the number of windings.

III. It is directly proportional to the square of the number
of windings.
IV. It is inversely proportional to the length.

(a) I, III & IV (b) I & IV (c) II & IV (d) I & II

10. In which direction will a current be induced on the coil
when the current in the straight wire shown in the �gure
below is decreased?

(a) Clockwise.
(b) Counterclockwise.
(c) No current is induced.
(d) It is impossible to tell.
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11. In which direction will the induction current �ow on
the branch ab of the circuit shown in the �gure above,
when it moves to the right?

(a) Upward.
(b) Downward.
(c) The current will be zero.
(d) It is impossible to tell.

12. Which of the following are correct for the number of
windings in a transformer?

I. The secondary emf will be larger if N2 > N1 .
II. The primary emf will be larger if N2 > N1 .

III. The secondary current will be larger if N2 > N1 .
IV. The primary current will be larger if N2 > N1 .
(a) I & III (b) II & IV (c) I & IV (d) II & III

13. Energy losses are caused by which of the following in a
transformer?

I. Resistance of the wire.
II. Loss of magnetic �ux.

III. Eddy currents.
IV. All of the above.

(a) I & III (b) II & III (c) I & II (d) IV

14. Which of the following are correct for the magnetic
energy stored in a coil?

I. It is directly proportional to the �owing current.
II. It is directly proportional to the square of the �owing
current.

III. It is directly proportional to the inductance.
IV. All of the above.

(a) I & III (b) II & III (c) I & II (d) IV

15. The magnetic �ux crossing a coil decreases from 6 T·m2

to zero in 2 seconds. What will the induction emf be?
(a) 2 (b) 3 (c) 8 (d) 12

16. By what factor will the inductance increase when the
number of windings of a solenoid is doubled?

(a) 2 (b) 4 (c) 1/4 (d) 1/2

17. By what factor will the magnetic energy increase if the
inductance of a coil is doubled and the current �owing
is tripled?

(a) 6 (b) 16 (c) 18 (d) 36

18. The number of primary windings of a transformer is dou-
bled and the number of secondary windings is increased
by a factor of 4. By what factor will the secondary volt-
age increase?

(a) 2 (b) 4 (c) 8 (d) 1/2

19. How much energy will be stored when a 10 A current
�ows through a coil with inductance L = 0.5 H?

(a) 2 J (b) 10 J (c) 25 J (d) 50 J

20. Which of the following is the expression for mutual
inductance?

(a) µ0N1N2A
`

(b) µ0N1A
N2`

(c) µ0A
N1N2`

(d) µ0A2

N1N2`

Problems

21.1 Faraday’s law

21.1 The magnetic �ux crossing a coil varies as
ΦB = t3 + 2t (tesla·m2)

Calculate the induction emf in the coil at time t=1 s .
[A: 5 V .]

21.2 The magnetic �eld crossing a coil with a cross-section
area of 50 cm2 and 200 windings, is raised from zero to 0.4 T
in 2 seconds. What is the emf inducted on the coil?

[A: 0.2 V .]

Problem 21.3

21.3 The conducting coil with resistance R=2 Ω , as shown
in the �gure above, is located in a magnetic �eld B=0.2 T
directed into the plane of the paper. The radius of the coil
starts to decrease as a = 3/t (meters). Find the value and the
direction of the current at t=2 s . [A: 0.24 A , clockwise.]
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Problem 21.4
21.4 The coil with radius a=50 cm and resistance R=10 Ω

in the �gure above is placed inside of a magnetic �eld that
varies as B=0.2t5 T . The magnetic �eld makes a 53◦ angle
with the plane of the coil. Find the value and the direction of
the current induced in the coil at time t=1 s .

[A: 0.063 A , clockwise.]

Problem 21.5
21.5 The conducting coil with resistance R=10 Ω in the �g-
ure is placed in a magnetic �eld directed out of the plane of the
paper. The radius of the coil decreases as a(t)=2e−3t (meters) ,
while the magnetic �eld increases as B(t)=0.1 et (tesla) . Cal-
culate the value and direction of the induction current in the
coil at time t=0 . [A: 0.63 A , counterclockwise.]

Problem 21.6
21.6 The rectangular loop with the dimensions given in the
�gure above is located in a region where a uniform magnetic
�eld B=0.5 T in the −y direction is present. The loop plane
makes a 30◦ angle with the x -axis. The magnitude of the
magnetic �eld is reduced down to zero in 0.1 s . Calculate the
value and direction of the current induced in the loop. The
resistance of the loop is R=1 Ω .

[A: 8.7 mA , upward on the front side.]

21.7 A coil with 100 windings has a cross-section area of
40 cm2 and is placed perpendicularly to a B=0.4 T magnetic
�eld. The direction of the coil is suddenly reversed by 180◦ .
Considering that this rotation takes place in 0.1 s , what will
the average induction emf inducted on the coil be?

[A: 3.2 V .]

21.8 The rectangular coil in the �gure below has resistance
R=10 Ω and is located inside of a B=0.4 T magnetic �eld
directed out of the plane of the paper. The side of the coil
with length L=40 cm is pulled to the left with a velocity
of v=6 m/s . Find the value and direction of the induction
current in the coil. [A: 0.1 A , clockwise.]

Problem 21.8 and Problem 21.9
21.9 How much force is required to pull the mobile side
of the rectangular coil shown in the �gure above with the
same constant velocity of v=6 m/s? (Hint: It is su�cient to
overcome the force exerted upon the current-carrying wire
in a magnetic �eld.) [A: F = 0.016 N .]

Problem 21.10
21.10 The mobile side with a length of 20 cm of a coil lo-
cated vertically in a B=0.5 T magnetic �eld directed out of
the plane of the paper, as shown in the �gure, has weight
W=0.1 N . The total resistance of the coil is R=10 Ω . What
is the limit velocity of the mobile side when it is released
for from rest? (Hint: The mobile side travels with constant
velocity when the magnetic force exerted upon its current is
equal to its weight.) [A: 100 m/s .]

Problem 21.11
21.11 The number of windings per unit length of the solenoid
shown in the �gure is n=800 turns/meter and the current
it carries decreases as I1=5/t2 (ampere). A coil with radius
a=20 cm and 25 windings placed inside of the volume of the
solenoid has resistance R=1 Ω . Determine the value and di-
rection of the current �owing through the inner coil at t=1 s .

[A: 0.032 A , in the same direction as I1 .]

Problem 21.12
21.12 In the �gure above, a rectangular coil with resistance
R=10 Ω and dimensions a=1 m and b=3 m is placed inside
of a uniform magnetic �eld B=0.5 T directed out of the paper.
The coil is rotating about its axis with an angular velocity
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of ω=5 rad/s . Calculate the current induced in the coil as a
function of time t . [A: I = 0.75 sin 5t .]

21.2 Generators and Transformers

21.13 The rotating coil of a generator is made of N windings,
each with cross-sectional area 40 cm2 and is rotating with
an angular velocity of 100 rad/s inside of a 0.2 T magnetic
�eld. What is the minimum number of windings required
such that the maximum voltage generated by the generator
is 24 V? [A: N = 300 windings.]

21.14 The primary circuit of a transformer has 100 windings
and its secondary circuit has 40 windings. What will a 120-
volt and 10-ampere current entering the transformer be at
the output? [A: 48 V and 25 A .]

21.15 A 24 V and 20 A current supplied to the primary cir-
cuit of a transformer is required to generate a 1 A current.
What will the ratio N2/N1 and the output voltage be?

[A: N2/N1 = 20 and E2 = 480 V .]

21.16 The 1000W in power generated in a generator is
transmitted using two methods. (a) What will the power con-
verted into heat be on the 1 Ω of resistance of the line when
transmitted at a voltage of 200V ? (b) What will the power

converted into heat be on the 1 Ω of resistance of the line
when this same power is �rst increased to a voltage of 500V
using a transformer? [A: (A) 25 W , (b) 4 W .]

21.3 Inductance – Magnetic Energy

21.17 Of two coaxial solenoids, the current on the �rst one
decreases from 5 A to zero in 0.01 s and a 2000 V emf is
generated on the second solenoid. Determine the mutual
inductance of this system. [A: M = 4 H .]

21.18 A 3 A current is �owing through a coil with 2 H in
inductance. (a) How much energy is stored in the coil? (b)
The current increases by 40 A/s each second. What is the
emf induced in the coil? [A: (a) 9 J , (b) 80 V .]

21.19 (a) Calculate the inductance of a solenoid with 600
windings, 50 cm in length and a 20 cm2 cross-sectional area.
(b) Calculate the energy stored when a 10 A current �ows
through this solenoid. [A: (a) 1.8 mH , (b) 0.09 J .]

21.20 A conducting wire is wound N2=50 times around a
solenoid with length `=20 cm , cross-section area A=100 cm2

and N1=800 windings. Calculate the mutual inductance of
the system. [A: M = 2.5 mH .]

?
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The Hubble Space Telescope,
with the Earth in the back-
ground. This 11-ton spacecraft
contains a telescope 2.4 m in
diameter. It is able to clearly
see the furthest celestial objects
in space, as its orbit at 560 km
in altitude is located outside of
Earth’s atmosphere. The Hubble
telescope will remain in service
until 2030.

In this chapter, we shall introduce Optics, one of the most important branches
of physics. All human activity in nature starts with the sense of sight. The sense
of sight uses a property of materials called light. The light emitted from the
objects around us forms an image in our eyes. We thus know that such an object
is there even if we are unable to touch it.

We will �rst learn the structure of light. Understanding that light is an
electromagnetic wave was one of the most important developments in the history
of science. Many technical and optic instruments were able to be developed after
this wave structure was understood.

We will also discuss the laws governing the way in which light behaves when
passing from one medium into another or when being re�ected. We will work
out to calculate the formation of images by mirrors and lenses, which facilitates
daily life and technology.
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22.1 THE WAVE NATURE OF LIGHT

Various answers have been given throughout history to the question of “What
is light?” The road of the theories of light is very interesting. The particle model
set forth by Newton was accepted until the 19th century. Newton asserted that
sources of light would emit particles too small to be seen, which would then cause
images to be formed when they reached the eye, and he could explain re�ection
and refraction of light accordingly. Despite the fact that, during the same years,
Huygens and Fermat had claimed that light could be a wave, they did not receive
much recognition.

However, the wave-model of light began to stand out in the early 19th century,
when Young and Fresnel revealed light’s interference and di�raction properties.
This was because interference and di�raction properties cannot be explained with
the particle model.

Later, in 1873, James Clerk Maxwell published his electromagnetic theory,
merging electricity and magnetism into a single theory. He suggested the concept
of the electromagnetic wave for the �rst time. According to Maxwell, the electric
�eld E and the magnetic �eld B are both jointly included in an electromagnetic
wave (Figure 22.1), as transverse sinusoidal waves (perpendicular to the direction
of propagation).

Figure 22.1: The �elds E and B
constituting an electromagnetic
wave are in transverse sinusoidal
wave motions perpendicular to
the direction of propagation.

Maxwell found the following expression for the propagation speed of electro-
magnetic waves in free space in terms of the electric permittivity and magnetic
permeability of free space:

v =
1
√
ε0µ0

When calculated, this expression was found to be equal to the speed of light:

c =
1
√
ε0µ0

= 2.9979 × 108 m/s ≈ 3 × 108 m/s

After coming up with this result, Maxwell went one step further and asserted
that light was also an electromagnetic �eld. His ideas were soon proven experi-
mentally. In 1887, Heinrich Hertz managed to generate an electromagnetic wave
in laboratory.

Today, we know of all kinds of electromagnetic waves, from radio waves to
microwaves, infrared rays to X- and gamma rays. Let us show these waves on a
graph called a spectrum, sorted according to their frequencies (Figure 22.2):

• Radio waves are waves whose wavelength ranges from 10 cm to 10 km
and that can easily cross the atmosphere. They are used in radio and TV
broadcasts.
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Figure 22.2: Electromagnetic
wave spectrum.

• Microwaves have shorter wavelengths and are used in radars, wireless
internet, kitchen ovens, etc.

• Infrared rays are used in short-range communication and �ber-optic com-
munication. They are quickly absorbed by the atmosphere.

• Visible light is the range of wavelength to which the human eye is sensitive.
It ranges from red (700 nm) up to violet (400 nm).

Figure 22.3: The range of visi-
ble light.

• Ultraviolet rays have higher energy than visible light and may cause an
ionizing impact on tissues and lead to sunburns.

• X-rays are also dangerous for tissues and are used in medicine and the
industry because they can easily pass through matter.

• Gamma rays are the electromagnetic radiation with the highest energy.
They come from outer space or are emitted in nuclear reactions. They are
used in medicine for diagnosis and cancer treatment.

This model of electromagnetic waves was one of the great successes of classic
physics. However, some observations at the start of the 20th century revived
the particle model. New e�ects such as the photoelectric e�ect and Compton
scattering indicated that light behaved not like a wave, but like a billiard ball.

These uncertainties were resolved in 1926 with quantum theory. According
to quantum theory, not only light, but all particles have a double nature, called
the wave-particle structure. They exhibited their particle nature in certain cases
and their wave nature in certain other cases.

However, the classic electromagnetic wave model could explain all aspects of
light, except for the phenomena of scattering, emission and absorption of light.
The Ray Model of Light

Light emitted from any source propagates into space as an electromagnetic
wave. The locus of the points of this wave with the same phase is called a wave
front (Figure 22.4). A wave front expands in space as a spherical surface centered
at the source of light, if there is no obstruction. We can thus visualize light as a
successions of wave fronts.

Virtual lines assumed to be perpendicular to the wave front and in the direction
of propagation are called rays. In a homogeneous medium, rays are straight lines

Figure 22.4: Wave fronts, and
rays propagating perpendicular
to them.

drawn from the source. Rays may be curved in non-homogeneous media, for
example, when passing through the atmosphere. However, they shall always
propagate as perpendicular to the wave front. The ray model is easier to work
with than wave fronts.

Wave fronts can approximately be taken as planes at very far distances from
the source of light (Figure 22.5) where the radius of the sphere is very large. Such
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a wave with the source at in�nity is called a plane wave. Accordingly, the rays

Figure 22.5: Wave fronts be-
come planes and rays become
parallel at very great distances
from the source.

become parallel to each other.
Huygens–Fresnel Principle

What will happen when a propagating light wave meets an obstacle? Huygens
and Fresnel explained the propagation of light in a medium with the following
principle:

Every point of a medium on which a light is incident constitutes a new source of
waves, and the wave front emitted therefrom spreads evenly in every direction.

Consider two adjacent rooms. Let there be a hole in the wall between the two
rooms. When someone speaks in the �rst room, the sound will be heard in the
second room as if emitted from this hole. Even if the speaker changes position in
the room, in the second room, the sound wave will always be heard as if coming
from the same point. This complies with the Huygens–Fresnel principle.

Figure 22.6 shows what happens when a plane wave meets two slits in a
screen. The light spreads as new spherical wave fronts are emitted from these
slits.
The Speed of Light and Index of Refraction

Figure 22.6: The Huygens–
Fresnel principle: Each slit pro-
duces new wave fronts.

The speed of propagation of light is a universal physical constant:

c = 2.9979 × 108 m/s ≈ 3 × 108 m/s

Special techniques are required to measure such a high speed. Many techniques
have been developed throughout history to measure the speed of light. The most
commonly known method is the apparatus developed by the French scientists
Fizeau and Foucault.

In the Fizeau–Foucault apparatus, the light emitted from a very distant source
passes between the teeth of a rotating wheel and is converted into light pulses
(Figure 22.7). A pulse is observed after it is re�ected back from a mirror and again
passes between the teeth of the wheel. When a pulse is re�ected from the mirror,
it gets stopped if the rotation speed of the wheel is not right. By varying the
rotation speed, it is ensured that a pulse passes through the teeth while both
going and returning. When this is achieved, the speed of light can be calculated
in terms of the distance between the mirror and the wheel, the rotation speed of
the wheel and the number of teeth.

Figure 22.7: The Fizeau–
Foucault apparatus for
measuring the speed of light.

(Note: The expression above, “measuring the speed of light,” became meaning-
less after 1983. If we remember the modern de�nition of the basic unit of length
(meter) as “the distance traveled by light in vacuum in 1/299 792 458 seconds,"
we understand that the speed of light is a given universal constant; there is no
question of measuring it. What these experiments really measure is the length of
the meter unit. This outlook is only correct historically: Before 1983, the meter
unit was de�ned di�erently, and then the speed of light was measured.)

The speed of light decreases when the light passes through a gas or liquid
environment. It is easy to understand the reason for this: Recalling the de�nition
for the speed of light c = 1/

√
ε0µ0 , as ε > ε0 and µ > µ0 is true for every

medium, the speed of light will always be less than its value in vacuum.
This degree of slowing is expressed with a dimensionless coe�cient. If we

use v to indicate the speed of light in the medium and c to indicate its speed in
vacuum, the ratio

n =
c
v

(index of refraction) (22.1)
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is called the index of refraction of the medium. The index of refraction depends
on the type of medium and the wavelength of the incident light. The index of
refraction of some media are as follows:

Index of refraction of some media.

n n

Vacuum 1 Acrylic glass 1.49
Air 1.0003 Flint glass 1.60
Water 1.3330 Crown glass 1.52
Ice 1.309 Silicon 3.96

Recall the relation between the velocity v , wavelength λ and frequency f
(or period T ) of a wave:

λ = vT =
v

f
(22.2)

The frequency of a light wave does not change when passing from one medium
into another. Frequency is a quantity determined by the source generating the
wave. (When you generate a wave by vibrating a rope, the up and down vibration
frequency of the rope does not vary with the propagation of the wave.) Therefore,
if we write the above formula for two media and divide both sides, we get

λ1

λ2
=
v1

v2
(22.3)

22.2 REFLECTION AND REFRACTION

A light ray that reaches the interface surface between a medium with index
of refraction n1 and another medium with index of refraction n2 will be partially
re�ected and be partially refracted (bent in the second medium). Let us �rst give
the laws of re�ection and refraction:

Laws of Re�ection and Refraction

1. Re�ected and refracted rays are in the plane of incidence
formed by the the incident ray and the normal to the surface.
2. The angle of incidence and the angle of re�ection measured
from the normal to the surface are equal:

θ1 = θ′1 (22.4)

3. The relation between the angle of incidence and the angle of
refraction is determined with Snell’s law:

n1 sin θ1 = n2 sin θ2 (Snell’s law) (22.5)
Figure 22.8: Re�ection and re-
fraction.Each of these laws can be proven using wave fronts. Let us prove the refraction

law here as an example.
Consider two incident light rays with the same angle of incidence θ1 (Fig-

ure 22.9). When the �rst ray reaches point A on the interface, the point B , which
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is on the same wave front still has to cover distance BC . While this second ray
travels distance BC at velocity v1 , the ray at point A will start to travel at velocity
v2 in the second medium. The distances traveled in the same time interval ∆t
will be as follows:

BC = v1 ∆t AD = v2 ∆t

The new wave front thus becomes DC . Let us write the distances BC and AD

Figure 22.9: Successive wave
fronts travel slower in the sec-
ond medium.

in terms of the common side AC and the angles:
BC = v1 ∆t = AC sin θ1 AD = v2 ∆t = AC sin θ2

We now divide both sides:
v1

v2
=

sin θ1

sin θ2

Lastly, we replace velocities v using the formula n = c/v :
v1

v2
=

n2

n1
=

sin θ1

sin θ2

This is the Snell’s law in Eq. (22.5).
Let us emphasize the important points of re�ection and refraction:
• If the incident ray is perpendicular (θ1=0) , then θ2=0 and the ray goes into

the second medium without refraction.
• If the rays fall on an interface where n1 < n2 (e.g., air-water), there is always

refraction in the second medium. In this case, we have θ2 < θ1 and the
Figure 22.10: Light coming out
of water shows a pencil as if bro-
ken.

refracted ray approaches the surface normal. This is what causes a rod
submerged in water to seem as if it is broken (Figure 22.10).

• Total internal re�ection. An interesting thing happens when rays try to
exit a denser medium, e.g., from water into the air (n1 > n2) . In this situation,
the exiting rays bend away from the normal. As the angle of incidence θ1
increases, the angle of refraction θ2 approaches 90◦ (Figure 22.11). When θ1
is greater than this value, no refraction occurs and all of the light is re�ected
internally. Let us write Eq. (22.5) for θ2 :

n1

n2
sin θ1 = sin θ2

As n1/n2 > 1 when leaving a denser medium, this equation has no solutions
Figure 22.11: Total internal re-
�ection and critical angle θc .

for angles that make the right-hand side greater than 1. Therefore, for a
solution to exist, we must have

n1

n2
sin θ1 6 1

In particular, the maximum incident angle that makes the right-hand side
equal to 1 is called the critical angle and is indicated with θc :

sin θc =
n2

n1
(Critical angle) (22.6)

In conclusion, it is possible to exit from a denser medium only with angles
θ1 < θc . The light cannot exit the medium and is fully re�ected back at angles
greater than this. This interesting phenomenon is called total internal

Figure 22.12: Light entering
one end of a �ber optic cable is
transmitted to the other side by
total internal re�ection.

re�ection.
The most important application of total internal re�ection is �ber optic
cables. Both visible light and other electromagnetic waves can be transmitted
through �ber optic cables with very slight losses.
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Dispersion of Light
White light incident on a glass prism is dispersed into all of the colors of

visible light after passing through the glass medium. As seen in the adjacent
�gure, all of the components of visible light from red to violet are refracted at
di�erent degrees. Red light, which has a greater wavelength, is refracted less and
violet light, which has a lesser wavelength, is refracted more.

This property, which shows that the index of refraction is di�erent at each
wavelength, is called the dispersion of light:

n = n (λ) (Dispersion) (22.7)

As a rule, index of refraction decreases with wavelength.
Figure 22.13: Dispersion of
light.

Recall that the index of refraction depends on the speed of light with the
formula n = c/v . The speed of light c in vacuum is the same in all wavelengths,
however, its velocity v is di�erent at each wavelength. According to the �gure
above, the speed of light in a medium with a larger wavelength (red) is greater
than that of violet light.
Rainbow

The dispersion property of light combined with the total internal re�ection
e�ect that we discussed above produces one of the most spectacular scenes in
nature. A rainbow that contains all of the colors and that seems to be suspended
in the air is observed when the sun comes out after rain.

Let us explain in a �gure how a rainbow is formed. Consider the paths traveled
by the red and violet components inside of a ray of sunlight incident on a spherical
droplet of water, as shown in Figure 22.15a. According to dispersion property,

Figure 22.14: Rainbow.violet light will be refracted more than red light in the droplet. When these two
rays reach the back surface of the sphere, in certain droplets, the two rays incident
at angles higher than the critical angle cannot exit the droplet, and thus re�ect
inside due to total internal re�ection. After a few re�ections, these two rays will
�nally exit the droplet and continue on their paths.

Figure 22.15: (a) Total internal
re�ection inside of a spherical
water droplet. (b) The image of a
rainbow formed in the eye by re-
�ections from droplets at various
angles.

Let us now examine the e�ect generated when the red and violet rays from
two such droplets reach our eyes. As shown in Figure 22.15b, from two droplets
located at di�erent locations, we observe the light from the top one as red and
the light from the bottom one as violet. The droplets in the area between these
two ends are lined up so as to re�ect all of the other colors of visible light.

These particular re�ections take place only within a certain range of degree.
Other re�ections do not reach our eyes. Also, we observe the same phenomenon
within the same degree range from di�erent directions. As a result, a colorful
image appears in an arch-shaped region.
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Example 22.1

The yellow light of sodium, which has a 598 nm wavelength
in vacuum, enters a glass medium with an index of refraction
of 1.6 . (a)What is the frequency of this light in vacuum?
(b) What is its speed in a glass medium? (c) What is its wave-
length in a glass medium?

Answer
(a) The relation between the speed, frequency and wavelength
of a wave is found using Eq. (22.2):

f =
v

λ
We calculate frequency by taking the speed of light in vacuum
as c :

f =
c
λ

=
3 × 108

598 × 10−9 = 5 × 1014 Hz

(b) Frequency remains constant when light passes into an-
other medium, however, its speed and wavelength changes.
We use Eq. (22.1), in which we de�ned the index of refraction:

n =
c
v
→ v =

c
n

From here, we calculate the speed of light in a glass medium:

v =
c
n

=
3 × 108

1.6
= 1.9 × 108 m/s

(c) The wavelength in a glass medium can either be calcu-
lated using λ = v/ f in terms of speed and frequency or by
taking the ratio of these values in the two media. There is
less calculational error in taking the ratio:

λ2

λ1
=
v2

v1

λ2 =
v2

v1
λ1 =

1.9
3
× 598 = 379 nm .

Example 22.2

A light ray is sent from air to glass (n = 1.60 ) with a 30◦ angle
of incidence. (a) What is the angle of refraction in the glass
medium? (b) The light is sent at such an angle that its angle of
refraction is half its angle of incidence: θ2 = θ1/2 . What is the
angle of incidence?

Answer
(a) We use Snell’s law (n1 = 1, n2 = n ):

sin θ1 = n sin θ2

We substitute the values and solve for θ2 :

sin θ2 =
1
n

sin θ1 =
1

1.6
× sin 30 = 0.31

We use tables or a calculator to �nd the angle with a known
sinus value:

θ2 = 18◦ .
(b) In Snell’s law, we take θ2 = θ1/2 and solve for θ1 :

sin θ1 = n sin θ1/2
Using the half angle formula sin θ1=2 sin θ1/2 cos θ1/2 from
trigonometry and simplifying, we get

2 cos θ1/2 = n → cos
θ1

2
=

n
2

From here, we calculate the cosine of the half angle:

cos
θ1

2
=

1.6
2

= 0.8 →
θ1

2
= 37◦ .

From here, we �nd that θ1 = 74◦ .

Example 22.3

The light emitted from a lamp located at the bottom of a 10 m -
deep-pool produces an illuminated circle at the surface of the
water. What is the radius of this circle? (The index of refraction
of water is 1.33 .)

Answer
As shown in the �gure, only the rays up to the critical angle

θc among those sent from inside of the water can pass into
the air, while the rest undergo total internal re�ection. We
therefore �rst �nd the critical angle.
Here, the �rst medium is water (n1=n ) and the second
medium is air (n2=1 ). Let us write Snell’s law:

n sin θ1 = sin θ2

We �nd the critical angle by taking the maximum value of
the angle of refraction in air as θ2 = 90◦ :

n sin θc = 1 × sin 90◦ = 1

sin θc =
1
n

=
1

1.33
= 0.75 → θc = 49◦

We write the expression for the radius R by examining the
right triangle in the �gure:

R = h tan θc = 10 × tan 49◦ = 10 × 1.15 = 11.5 m .

Example 22.4

The apex angle of a prism is 90◦ . A ray that enters the prism
with an angle of incidence of 53◦ from point A on one side
exits from the other side at point B as parallel to the surface.
Determine the index of refraction of the glass.

Answer
We write Snell’s law for the �rst surface:
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sin 53◦ = n sin θ2 (1)

We need a second equation, as both n and θ2 are unknown.
For this purpose, let us look at the second surface. As the
refracted rays go parallel to the surface at point B, there is
total internal re�ection, in other words, the rays are incident
on the surface at the critical angle θc . As seen in the drawing
in the �gure, we have θc = 90◦ − θ2 . Let us write the critical
angle formula:

sin θc =
1
n
→ n sin(90◦ − θ2) = n cos θ2 = 1 (2)

We divide equations (1) and (2) on both sides:
n sin θ2

n cos θ2
=

sin 53◦

1
→ tan θ2 = sin 53◦ = 0.8

From here, we �nd θ2 = 39◦ and calculate n by substituting
in the second equation:

n =
1

cos 39◦
= 1.28

22.3 IMAGE BY REFLECTION – MIRRORS

Formation of an Image by Reflection
In the optics sense, an object is a body from which light rays originate. It

can be a lamp, in other words, generate its own light. Other objects may re�ect
back the rays that they receive from the environment. When light rays diverging
from an object reach the intersection of two media, they are partially re�ected
and partially transmitted to the second medium through refraction. An image is
formed at the position where either re�ected or refracted rays converge. It is a
real image if the rays really intersect and a virtual image if only the extensions
of the rays intersect.

(A practical method for determining whether the image is real or virtual is to
place a screen at the location of the image. A real image will form on the screen,
but a virtual image will not.)

In this section, we shall examine the properties of images formed through
re�ection. Mirrors are used to obtain images through re�ection. Mirrors are
surfaces that are polished or that have their re�ection properties increased through
coating by another material and re�ect almost all of the incident light. The most
commonly used types are plane and spherical mirrors.
Plane Mirror

When we look at a plane mirror, what we see makes it look as if an exact
copy of whatever object is standing in front of the mirror is behind the mirror
(Figure 22.16). According to our de�nition above, this is a virtual image, because
the two rays are not really intersecting; rather it is as if their extensions are
intersecting at a point behind the mirror. In the case of a plane mirror, the image
is always virtual. However, the image has the same length, direction and distance
from mirror as the object.

Figure 22.16: The image is vir-
tual in a plane mirror because
the extensions of the rays inter-
sect behind the mirror.

In Figure 22.16, the distance of the object from the mirror is indicated with
p and the distance of the image to the mirror is indicated with q . The absolute
value of these two distances is equal. However, the object and image positions
are taken as algebraic numbers in the calculations, as we shall see later.

Sign rule 1: According to the assumption made in optics, the positions of real
objects and images are taken as positive and the positions of virtual images and
objects are taken as negative.

Accordingly, the relation between the positions of the object and the image
in a plane mirror should be expressed as follows:

q = −p
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Spherical Concave Mirror
In a concave mirror, the rays are re�ected from the inner surface of a sphere.

If we use C to indicate the center of the sphere with radius R , the line extending
from the middle point O on the mirror to C and beyond is called the principal
axis: CO = R .

At least two rays from the object are su�cient to obtain an image in a concave
mirror. We know two such rays from our laws of re�ection:

1. The ray drawn from the object to the middle point O will be re�ected back
at an equal angle with the principal axis (Figure 22.17, ray 1).

2. The ray passing through the center C of the sphere will be re�ected back on
itself, since it falls perpendicularly on the mirror (Figure 22.17, ray 2).

Figure 22.17: Coordinates in a
concave mirror.

A real image forms at the intersection of these two rays. If they do not
intersect, their extension beyond the mirror will form a virtual image, to be
examined later.

Let us use the coordinates shown in Figure 22.17 to �nd the position and
height of the image. Let p be the position of the object at point P as measured
from the mirror and q be the position of the image at point Q .

Also, let us use h to indicate the height of the object and h′ to indicate the
height of the image. We make a new assumption here for the heights:

Sign rule 2: The height of an inverted image is expressed with a negative sign.
This means that the h′ shown in the �gure has a negative sign.

As the right triangles OPP′ and OQQ′ facing the same angle θ are similar
triangles, the ratios of their sides are equal:

h
−h′

=
p
q

(22.8)

Note that, as the height of the inverted image h′ is negative, an extra negative
sign was placed before it to make it positive.

This time, let us use the similarity of the triangles CPP′ and CQQ′ facing
the same angle α . Remember to take the height of the inverted image as (−h′) .
When writing the ratios of the sides, we get

h
−h′

=
p − R
R − q

Eliminating h/h′ from the last two formulas, we get

p
q

=
p − R
R − q

From here, we obtain the formula that gives us the position of the image q :

1
p

+
1
q

=
2
R

(22.9)

Focal point: When the object is very far away, in particular, when p→∞ in the
equation above, we have 1/p = 0 and the image position is:

q =
R
2
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This special point is called the focal point F and its distance to the mirror is
called the focal length f =R/2 . The focal point is the midpoint between the
mirror and the center of the mirror.

Likewise, when the object is placed at the focal point, p= f =R/2 in the equa-
tion above, we have 1/q=0 and q→∞ , in other words, the image is at in�nity.

In conclusion, the concave mirror equation in terms of the focal length f is:

1
p

+
1
q

=
1
f

(Concave mirror equation) (22.10)

Magni�cation: The ratio of the image height h′ to the object height h is called
the magni�cation and is indicated with M = h′/h . Eq. (22.8) gives us the magni�-
cation in terms of positions:

M =
h′

h
= −

p
q

(Magni�cation) (22.11)

Also, solving the equation (22.10) for q , we get

q =
p f

p − f

Figure 22.18: Images in an con-
cave mirror: (a) The image is real
and smaller if the object is be-
yond the center, (b) The image
is real and larger if the object is
between the center and the focal
point, (c) The image is virtual if
the the object is closer than the
focal point.

These two equations show us the possibilities for the image position and the
magni�cation:

• If p > f , we have q > 0 and M < 0 . In other words, beyond the focal point,
we have a real, inverted image (Figure 22.18a and b).

• If p < f , we have q < 0 and M > 0 . In other words, inside of the focal
point, we have a virtual, upright image (Figure 22.18c).

Concave mirrors are used to collect light or to send light to faraway points.
They are used to focus light in telescopes, lasers and solar panels. On the other

Figure 22.19: The concave mir-
ror used in the Hubble space
telescope.

hand, light emitted from the focal point in automobile headlights and �ashlights
can be sent as parallel beams over very great distances. Also, they provide a
bigger virtual image in dentist’s and shaving mirrors.

Example 22.5

The focal length of a concave mirror is f =30 cm . (a) Where will
the image of an object with 1 m in size placed 120 cm away
from the mirror form and what will its size be? (b) Answer
the same question for an object with 1 m in size placed 10 cm
away from the mirror.

Answer A diagram should always be drawn in mirror cal-
culations to get an idea about the image. Certain particular
rays are useful for obtaining the image. Three particular rays
are shown in the following �gure:
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1st ray: Each ray coming from in�nity will be re�ected from
the focal point.
2nd ray: The ray incident at the central point (O) of the
mirror will be re�ected at an equal angle.
3rd ray: The ray passing through the focal point (F) will be
re�ected as parallel.
Only two of these three rays are su�cient, because the image
will form at the intersection of two rays.

(a) We write the concave mirror equation (22.10):
1
p

+
1
q

=
1
f
→ q =

p f
p − f

The focal length is taken as positive if the mirror is concave:
f = 30 cm . Accordingly, we calculate the image of an object
p = 120 cm away:

q =
120 × 30
120 − 30

= 40 cm

The image is real, because q is positive.

We use the magni�cation M that we de�ned with for-
mula (22.11) to �nd the size of the image:

M =
h′

h
= −

q
p

= −
40

120
= −

1
3

The negative sign indicates that the image is inverted. There-
fore, a triply diminished inverted image is formed.
(b) This time, the object is placed between the focal point and
the mirror. The image is formed as follows, if we take two
particular rays, one from the center and one from the focal
point:

The image position is calculated using the same formula:

q =
10 × 30
10 − 30

= −15 cm

The image is virtual, because q is negative.
We then calculate the magni�cation:

M =
h′

h
= −

q
p

= −
(−15)

10
= +1.5

The positive sign means that the image is upright, in other
words, in the same direction as the object. Therefore, an
image enlarged by 1.5 times is formed in the same direction.

Convex Mirror
A convex mirror re�ects rays from the outer surface of a sphere. We again take

two rays to obtain the image of a convex mirror. As shown in Figure 22.20, since
one of the rays is directed towards the center C of the sphere, it is perpendicularly
incident to the surface of the mirror and is re�ected back in the same direction.
When the other ray is drawn towards the point O on the principal axis, it will be
re�ected at an equal angle with the principal axis.

Figure 22.20: The image is al-
ways virtual in a convex mirror.

Re�ected rays will never intersect at any point, regardless of which other
rays are taken, but their extensions intersect behind the mirror. Therefore, the
image is always virtual in a convex mirror.

There is no need to derive a new equation for the convex mirror. In a concave
mirror, the distance p of the virtual image behind the mirror was taken with a
negative sign. Likewise, the same formula will be valid again if we take the radius
R , and therefore the focal point f , as negative, since the center of a concave
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mirror is behind the mirror:

1
p

+
1
q

=
1
f

(Convex mirror equation, f negative) (22.12)

It can easily be proven that the image is always virtual, in the same direction as
the object and smaller in convex mirrors. Solving the same equation for q and
writing the magni�cation as well, we get

q =
p f

p − f
M =

h′

h
= −

q
p

=
− f

p − f

Considering that f is always negative in the formula on the left, the numerator
will always be negative and the denominator will always be positive. Therefore,
q will always be negative, in other words, the image will always be virtual. Also,
since the denominator is always larger, the magni�cation will be less than 1, in
other words, the image will always be smaller than the object.

Figure 22.21: A wing mirror on
a car.

Convex mirrors can contain the image of a broader area, because the image is
smaller than the object. Due to this property, they are used in the wing mirrors
and rear-view mirrors of automobiles.

Example 22.6

The focal length of a convex mirror is 20 cm . Where will the
image of an object with 1 m in size placed 60 cm away from
the mirror form and what will its size be?

Answer
The image will form as follows if we take two particular rays,
one re�ecting from the midpoint at an equal angle, and the
other directed towards the center and re�ected back on itself:

(a) We write the formula (22.10) that we found for the convex
mirror:

1
p

+
1
q

=
1
f
→ q =

p f
p − f

The focal length should be taken as negative, because the mir-
ror is convex: f = −20 cm . We calculate the image position
accordingly:

q =
60 × (−20)
60 − (−20)

= −
120
80

= −15 cm

The image is virtual, because q is negative.
We then calculate the magni�cation:

M =
h′

h
= −

q
p

= −
(−15)

20
= +

3
4

The positive sign means that the image is upright, in other
words, in the same direction as the object. Therefore, an
image diminished by 3/4 is formed in the same direction.

22.4 IMAGE BY REFRACTION– LENSES

Light rays exiting from an object may again intersect to form an image after
refracting into another medium. In glass lenses, rays �rst enter the glass medium
and then get refracted from there to continue on their paths, subsequently going
back into the �rst medium. Therefore, they get refracted twice.
Refraction from a Spherical Surface

In order to understand the image formed by a lens, let us �rst solve half of
the problem and consider the image in a semi-in�nite glass medium.

In Figure 22.22, rays coming from a medium with index of refraction n1 are
incident on a spherical surface with radius R and then pass into the second
medium with index of refraction n2 .
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Figure 22.22: Coordinates in a
spherical surface.

This time, let us take the object as a point P on the principal axis. Let one
of the rays emitted from that point be the principal axis itself. This ray directly
passes into the second medium when it is incident on the surface at a right angle.
Let the other ray start at angle α with the principle axis and be incident to the
surface of the glass at point A at angle θ1 with the normal.

According to Snell’s law, this ray will get refracted by a certain angle θ2 . The
image will form at the point Q where this ray intersects the principal axis.

If a ray with a very small angle α is chosen, the ray will be incident to the
surface almost perpendicularly, in other words, θ1 , and therefore θ2 , will be very
small. Accordingly, Snell’s law is simpli�ed at very small angles where we can
take sin θ ≈ θ :

n1 sin θ1 = n2 sin θ2 =⇒ n1 θ1 ≈ n2 θ2

In a triangle, an exterior angle is equal to the sum of the two opposite interior
angles. Applying this property to the triangles PAC and QAC , we get

θ1 = α + β and β = θ2 + γ

Eliminating θ1 and θ2 from these three formulas, we get

n1α + n2γ = (n2 − n1)β (22.13)

As angles α, β, γ are very small, using the approximate expression tan θ ≈ θ , we
can calculate the tangents of these angles from Figure 22.22. Using the perpendic-
ular d facing all three angles, we get

α ≈ tanα ≈
d
p

β ≈ tan β ≈
d
R

γ ≈ tan γ ≈
d
q

We substitute the values of these three angles in the equation (22.13) and simplify:

n1

p
+

n2

q
=

n2 − n1

R
(22.14)

This formula is valid for all n1, n2 values. Also, this proof was made for a convex
spherical surface. But it can also be shown to be valid for a concave spherical
surface. In order to do this, we agree on the sign of the radius R of the sphere as
follows: R is taken as positive if the center C of the sphere surface is inside of the
medium n2 and R is taken as negative if it is outside. Then, this formula will also
be valid for refraction from a concave surface.

This expression shall be used later to obtain the lens formula.
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Refraction at a Plane Surface
Let us apply the above formula to a special case in which the interface is

a plane. If we consider a plane as a sphere with in�nite radius, when we take
R→ ∞ in the formula (22.14), we get

n1

p
+

n2

q
= 0

From here, we �nd the position of the image:

q = −

(
n2

n1

)
p (22.15)

According to this result, the image will always be virtual on a plane surface. For
Figure 22.23: A �sh under wa-
ter seems nearer when looked at
from above.

example, a pool seems to be shallower when looked at from the outside (n1 > n2) .
Likewise, a �sh looking at us from under the water (n1 < n2) sees us as further
away.
Thin Lenses

Glass lenses with two spherical surfaces are used in all kinds of optical instru-
ments. The image may be real or virtual, depending on whether these surfaces are
convex or concave. Lenses with convex surfaces are called converging lenses
and those with concave surfaces are called diverging lenses. This designation
will be understood later.

We have to use the formula (22.14) twice in order to obtain a formula that is
valid for all lenses. To simplify the calculations, let us take the �rst medium as air
and the index of refraction as n ≈ 1 .

Figure 22.24: Coordinates for a
lens with thickness t .

Let us consider a lens with radius of the �rst surface R1 , radius of the second
surface R2 and thickness t (Figure 22.24). Let p1 be the distance between an
object at point P outside of this lens. Let q1 be the position of the intermediate
virtual image ( Q′ ) formed on the same side as P (q1 is negative). Accordingly,
if we apply Eq. (22.14) to a surface with radius R1 at the interface between air
(n1 = 1 ) and glass (n2 = n ), we get

1
p1

+
n
q1

=
n − 1

R1

The rays intersecting at this virtual image q1 then continue on their paths and
arrive at the second surface located at distance t . If the thickness of the glass is
t , this intermediate image is considered as an object at position p2 = t − q1 for
the second surface. We apply the equation (22.14), this time to the surface with
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radius R2 at the interface of glass (n1 = n ) and air (n2 = 1 ):

n
t − q1

+
1
q2

=
1 − n

R2

Note that R2 is negative, because it is inside of the glass.
Now, we take t ≈ 0 , assuming that the lens is thin and we add these last two

equations on both sides and eliminate q1 . Also, if we remove the subscripts and
rename them as the �rst object ( p1 = p ) and the �nal image (q2 = q ), we get the
following result:

1
p

+
1
q

= (n − 1)
(

1
R1
−

1
R2

)
(Lens makers’ equation) (22.16)

This result is known as the lens makers’ equation. We can write it in terms of
the focal length f to make it more practical. As q = f when p→ ∞ , substituting
these values, we get

0 +
1
f

= (n − 1)
(

1
R1
−

1
R2

)
and f is positive for a converging (convex) lens because we take R1 > 0 and

Figure 22.25: Converging lens. R2 < 0 . f is negative for a diverging (concave) because R1 < 0 and R2 > 0 .
Every lens has two focal points, because the rays can go in both directions.

In conclusion, the thin lens equation for both converging and diverging lenses
is as follows:

1
p

+
1
q

=
1
f

(Thin lens equation) (22.17)

f is positive for a converging lens and f is negative for a diverging lens. The
Figure 22.26: Diverging lens. image is real if q is positive and virtual if it is negative.

Magnification ( M )
As in mirrors, the ratio of the height h′ of the image to the height h of the

object is the magni�cation, and its relation with the positions is as follows:

M =
h′

h
= −

q
p

(22.18)

If M is positive, the image is in the same direction as the object and virtual; if M
is negative, the image is inverted and real.
Power of a Lens ( D ).

Opticians use the optical power of a lens, rather than its focal length. The
power of a lens is just the inverse of the focal length f , which is expressed in
meter units:

D =
1

f (meters)
The unit of lens power is the diopter. For example, a lens with D = 3 diopter
will focus parallel incident rays to f = 1/D = 1/3 m = 33 cm .
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Example 22.7

The focal length of a thin converging lens is f = 40 cm .
(a) Where will the image of an object with a size of 1 m and
placed 60 cm away from the lens form? And what will its size
be?
(b) Answer the same question for the same object placed 30 cm
away from the lens.

Answer
(a) To form the image, let us consider two special rays, one
coming from in�nity in parallel to the axis and going through
the focal point and the other passing through the center of
the lens without being refracted. Accordingly, the image is
formed as follows:

We write Eq. (22.17), which we found for lenses:
1
p

+
1
q

=
1
f
→ q =

p f
p − f

The focal length is taken as positive, as the lens is converging:
f = 40 cm . Accordingly, we calculate the image of an object
p = 60 cm away:

q =
60 × 40
60 − 40

= 120 cm
The image is real, because q is positive.

We use the magni�cation M that we de�ned with for-
mula (22.11) to �nd the size of the image:

M = −
q
p

= −
120
60

= −2

The negative sign indicates that the image is inverted. There-
fore, a doubly magni�ed inverted image is formed.

(b) This time, the object is placed between the focal point
and the lens. The image is formed as follows if we take two
particular rays, one of which passes through the center of the
lens without being refracted and one coming from in�nity as
parallel to the axis and passing through the focal point.

The image position is again calculated using the same for-
mula:

q =
30 × 40
30 − 40

= −120 cm

The image is virtual, because q is negative.
We then calculate the magni�cation:

M = −
q
p

= −
(−120)

30
= +4

The positive sign means that the image is upright, in other
words, in the same direction as the object. Therefore, a
quadruply enlarged image is formed in the same direction.

Example 22.8

The focal length of a diverging lens is 50 cm . Where will the
image of an object with a size of 1 m placed 75 cm away from
the lens form and what will its size be?

Answer
The image will form as follows if we take two particular rays,
one coming from in�nity and re�ecting from the focal point
and the other directed towards the center and passing without
being refracted:

We write the thin lens equation:
1
p

+
1
q

=
1
f
→ q =

p f
p − f

The focal length should be taken as negative, because the lens
is diverging: f = −50 cm . We calculate the image position
accordingly:

q =
75 × (−50)
75 − (−50)

= −
3750
125

= −30 cm

The image is virtual, because q is negative.
We then calculate the magni�cation:

M = −
q
p

= −
(−30)

75
= +

2
5

= 0.4

The positive sign means that the image is upright, in other
words, in the same direction as the object. Therefore, an
image diminished by 2/5 is formed in the same direction.
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Example 22.9

An object is placed 16 cm away from a screen. It is required
that we obtain the image of the object on the screen using a
converging lens with a focal length of 3 cm . How far away
from the object should the lens be placed?

Answer
The image should be real (q positive), because it must ap-
pear on the screen. Therefore, the �rst relation between the

unknowns p and q will be as follows:
p + q = 16

Second, these p, q values ful�ll the lens formula:
1
p

+
1
q

=
1
f

=
1
3

If we get q = 16 − p from the �rst formula and substitute it
in this equation, we obtain an equation for p :

1
p

+
1

16 − p
=

1
3
→ p2 − 16p + 48 = 0

We �nd the roots of this 2nd degree equation and calculate q
starting from p . There are two solutions:

p =

{
4 cm

12 cm → q =

{
12 cm
4 cm

Example 22.10

An object placed in front of a converging lens with a focal length
of 24 cm has an image that is inverted and 3 times magni�ed.
Find the position of the object.

Answer
We establish and solve two equations for the two unknowns
(p, q) in this problem. The �rst one of these is the lens equa-
tion:

1
p

+
1
q

=
1
f

=
1

24
The other equation is obtained from the magni�cation:

M = −
q
p

The magni�cation should be taken as negative, because the
image is inverted:

−3 = −
q
p
→ q = 3p

We substitute this expression for q in the lens equation and
solve for p :

1
p

+
1

3p
=

1
24
→ p =

4 × 24
3

= 32 cm

And the position of the image is found as q = 3p = 96 cm .

22.5 OPTICAL INSTRUMENTS

Eye
The human eye (Figure 22.27), which is the most perfect optical instrument,

can see objects and distinguish colors within a very broad range. The eye is
shaped like a sphere with a 2.5 cm radius, and the cornea is located at the front of
its external surface, called the sclera, and acts as a window. A liquid-�lled anterior
chamber is located behind the cornea. Then, there is the transparent pupil located
at the center of a diaphragm with an open center, called the iris.

The pupil contracts and expands to adjust the amount of light entering the
eye. Behind it is located the eye lens with an index of refraction of 1.396. Ciliary
muscles around it hold the lens. Then, there is the liquid-�lled vitreous chamber.

Figure 22.27: Human eye. The rear of the eye is the retina, which is covered with many nerve ends
(neurons). The fovea, where the nerve ends are densest, allows us to see clearly.
The optic disk region, located at the back, where the nerve ends are gathered, is a
blind spot, and rays incident here are not sent to the brain. The optic nerve, to
which the nerve ends are connected, transmits the signals that it receives to the
brain.

The eye allows us to see by forming the image of an object on the retina. For
this purpose, the muscles that hold the lens vary the focal length of the lens by
relaxing and contracting, and ensure that the rays intersect on the retina. The
state in which the muscles are relaxed is when the eye is focused on in�nity. The
muscles contract more as the object approaches the eye and it ultimately cannot
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see clearly after a certain point, called the near point. The near point is around 25
cm in adults. The muscles lose their �exibility with age and the near point may
recede up to 2-3 meters.

Figure 22.28: In a nearsighted
eye, the image forms before the
retina and is corrected with a
diverging lens. In a farsighted
eye, the image forms behind the
retina and is corrected with a con-
verging lens.

A net image is not formed on the retina in defective eyes (Figure 22.28).
The eye has nearsightedness (myopia), if the image forms before the retina
and farsightedness (hyperopia) if it forms behind the retina. The defect is
corrected by using a diverging lens for nearsightedness and a converging lens for
farsightedness.

Astigmatism, another eye defect, is caused by the di�erence in curvature
Figure 22.29: You have astig-
matism if you do not see these
lines with equal thickness when
you look with one eye.

in horizontal and vertical planes. An astigmatic eye does not see horizontal and
vertical lines with the same clarity (Figure 22.29).
Microscope

We bring very small objects close to our eyes in order to see them. However,
we cannot bring them closer than the near point of the eye, because the eye
cannot focus on the object after the near point. In such a case, we use a simple
magnifying glass or a more complex microscope.

Microscopes consist of at least two converging lenses. The one called the
objective lens is located near the object and has a focal length of about 2−40 mm .
The one on the side of the eye is called the eyepiece lens and has a larger focal
length. The operating principle of the microscope is roughly as follows: If we
can obtain a larger and real image of the small object near the focal point of the
eyepiece, we can produce the �nal image as much larger and at the near point of
the eye.

Figure 22.30: Microscope. The
object is placed just beyond
the focal point of the objective
lens. The intermediate image is
formed near the focal point of the
eyepiece. The �nal image is at
the near point.

In the microscope diagram in Figure 22.30, the object is placed just in front
of the focal point of the objective lens. A larger and real intermediate image is
thus formed. The diverging rays from this image are considered as a new object
for the eyepiece. Then, the eyepiece’s distance is varied to ensure that this real
image is closer to the focal point of the eyepiece.
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Recall the formula for magni�cation: If we use h to indicate the height and p
to indicate the position of the object, and h′ for the height and q for the position
of the image, we get

M =
h′

h
= −

q
p

First, let us calculate Mo , the magni�cation at the objective lens: We can take
p ≈ fo , because the object is placed near the focal point of the objective lens. If
we ignore the negative size, the magni�cation of the objective is as follows:

Mo =
q1

fo

We take the following into consideration when calculating the magni�cation for
the eyepiece: The angular magni�cation is what is important for the eye. Even if
the size of the object is small, the angle at which the eye sees it becomes large.
For example, a needle close to the near point of the eye is perceived as larger
than a distant pole. For this reason, it is required that the �nal image given by the
eyepiece be close to the near point of the eye, in other words, at approximately
25 cm in distance. Accordingly, the magni�cation of the eyepiece is (for p2 = fe
and q2 = 25 cm ),

Me =
25 cm

fe
Combining these results, the total magni�cation of the microscope is the product
of these two magni�cations:

M = MoMe =
(25 cm) q1

fo fe
(22.19)

Microscopes operating with visible light have limited magni�cation. Microscopes
Figure 22.31: A microscope
made in 1879.

using electron beams are much more powerful.
Telescope

Telescopes are used to see celestial bodies and other distant objects much
larger and in detail. There are two types of telescopes: Refracting telescopes,
which only use lenses and re�ecting telescopes, which use a combination of lenses
and mirrors.

Figure 22.32: A telescope forms
a larger image of an object lo-
cated again at in�nity.

The operating principle of the telescope is to form an image of an object
located at in�nity that is again located at in�nity. The real image given by the
objective lens is taken by the eyepiece and a �nal image is formed at in�nity
which is magni�ed further. In the diagram shown in Figure 22.32, incident rays
from in�nity form an inverted and real image at the focal point of the objective.
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If the focal point of the eyepiece is located right at this point, it will form a virtual
image at in�nity with the rays that it receives from this intermediate image.

The angular magni�cation of the telescope is de�ned as the angular ratio of
the angle θ covered by the image to the angle θ0 of the object observed with a
naked eye:

m =
θ

θ0

As seen in the �gure, the angle θ0 covered by the object in the objective lens is
equal to the angle covered by the intermediate image in the objective lens. The
tangent of this angle is taken approximately as tan θ ≈ θ for small angles. If we
use fo to indicate the focal length of the objective lens, we get

θ0 ≈ tan θ0 =
h′

fo

Likewise, the angle θ covered by the �nal image in our eye is equal to the angle
covered in the eyepiece by the ray drawn as parallel from the intermediate image
to �nal image. Its tangent is also taken as an approximation for small angles. If
we use fe to show the focal length of the eyepiece, we get

θ ≈ tan θ =
h′

fe

We use these two formulas to �nd the angular magni�cation of the telescope as
follows:

m =
θ

θ0
=

fo
fe

(22.20)

It is necessary to use very large lenses, as the magni�cation of the telescope is Figure 22.33: The Mount Gra-
ham telescope in Arizona is the
largest re�ecting telescope in
the world with a diameter of
2 × 8.4 meter.

proportional to the focal length of the objective lens. However, re�ecting tele-
scopes that utilize mirrors are preferred, because large lenses are both expensive
to produce and di�cult to install. Likewise, radio wave, X-ray or gamma ray
telescopes are used in astronomy, rather than visible light.

Multiple-choice Questions

1. Which of the following is correct for electromagnetic
waves?

(a) The electric �eld is perpendicular and the magnetic
�eld is parallel to the direction of propagation.
(b) The magnetic �eld is perpendicular and the electric
�eld is parallel to the direction of propagation.
(c) The electric and magnetic �elds are perpendicular
to the direction of propagation.
(d) The electric and magnetic �elds are parallel to the
direction of propagation.

2. What is the speed of light in a medium with index of
refraction n=1.5?

(a) c/2 (b) 2c/3 (c) 3c/2 (d) 3c/4

3. Which of the following orderings of electromagnetic
waves is done according to increasing frequency?

(a) Microwave-X-ray-infrared-ultraviolet
(b) Infrared-ultraviolet-X-ray-microwave
(c) Microwave-infrared-ultraviolet-X-ray
(d) Infrared-visible light-gamma rays-microwave

4. Which of the following are correct?
I. Wavelength decreases as the speed of light decreases.

II. The speed of light decreases as the index of refraction
of the medium increases.
III. Wavelength decreases as the index of refraction of
the medium increases.
(a) I & II (b) I & III (c) II & III (d) All

5. Which of the following is the Huygens-Fresnel princi-
ple?
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(a) Every point of a medium on which light is incident
re�ects the wave.
(b) Every point of a medium on which light is incident
refracts the wave.
(c) Every point of a medium on which light is incident
constitutes a new source of waves.
(d) Two waves, one passing and one re�ected, are
formed at every point of a medium on which light
is incident.

6. Which of the following is Snell’s law?
(a) n1 cos θ1 = n2 cos θ2
(b) n1 sin θ1 = n2 sin θ2
(c) n1 sin θ2 = n2 sin θ1
(d) n1/ sin θ1 = n2/ sin θ2

7. Which of the following is correct for a light ray sent
from the water medium into the air?

(a) It never passes into the air.
(b) It always passes into the air.
(c) It passes at angles larger than a critical angle.
(d) It passes at angles smaller than a critical angle.

8. Which of the following is correct for a ray incident on
the interface between water (n=1.3 ) and glass (n=1.5 )?

(a) The rays always pass from glass to water.
(b) The rays always pass from water to glass.
(c) The rays always pass in both ways.
(d) All of the above.

9. In which of the following cases will the image of a real
object on a mirror be real?
I. If it is observed on a screen,

II. If the re�ected rays intersect at a point,
III. If the image is inverted.
(a) I & II (b) I & III (c) II & III (d) All

10. When will the image of a real object on a concave mirror
be virtual?

(a) When the object is between the center and the focal
point,
(b) When the object is between the focal point and the
mirror,
(c) When the object is between in�nity and the focal
point.
(d) When the object is between in�nity and the center.

11. When will the image of a real object on a convex mirror
be real?

(a) When the object is between the center and the focal
point,
(b) When the object is between the focal point and the
mirror,
(c) When the object is between in�nity and the focal
point,
(d) Never.

12. What is the focal length of a concave mirror with a 40 cm
radius of curvature?
(a) 10 cm (b) 20 cm (c) 40 cm (d) 80 cm

13. What is the focal length of a convex mirror with a 20 cm
radius of curvature?
(a) -20 cm (b) -10 cm (c) 10 cm (d) 40 cm

14. When will the image of a real object on a converging
lens be virtual?

(a) Object is between the center and the focal point,
(b) Object is between the focal point and the lens,
(c) Object is between in�nity and the focal point.
(d) Object is between in�nity and the center.

15. When will the image of a real object on a diverging lens
be real?

(a) Object is between the center and the focal point,
(b) Object is between in�nity and the center,
(c) Object is between the focal point and the lens,
(d) Never.

16. Which of the following are correct?
I. The image is always virtual on a convex mirror.

II. The image is always upright on a convex mirror.
III. The image is always virtual on a concave mirror.
IV. The image is always inverted on a concave mirror.
(a) I & II (b) I & III (c) II & III (d) II & IV

17. Which of the following is correct for the magni�cation
M ?

(a) The image is inverted and real if M > 0.
(b) The image is upright and real if M > 0.
(c) The image is inverted and virtual if M > 0.
(d) The image is upright and virtual if M > 0.

18. Which of the following is correct for the magni�cation
M ?

(a) The image is inverted and real if M < 0.
(b) The image is upright and real if M < 0.
(c) The image is inverted and virtual if M < 0.
(d) The image is upright and virtual if M < 0.

19. Which of the following is correct?
(a) The image is formed before the retina in a near-
sighted eye.
(b) The image is formed behind the retina in a near-
sighted eye.
(c) The image is formed before the retina in a farsighted
eye.
(d) The image is formed behind the retina in an astig-
matic eye.

20. By what factor will the magni�cation of a microscope
increase if its objective lens magni�es by 5 times and its
eyepiece magni�es by 20 times?

(a) 25 (b) 30 (c) 50 (d) 100
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Problems

22.2 Reflection and refraction

22.1 A light with a 600 nm wavelength in vacuum enters a
glass medium with an index of refraction 1.5 . (a) What is the
frequency of this light in vacuum? (b) What is its speed in a
glass medium? (c) What is its wavelength in a glass medium?

[A: (a) 5 × 1014 Hz , (b) 2 × 108 m/s , (d) 400 nm .]

22.2 What is the wavelength in glass of a light with a 500 nm
wavelength in water? (nwater =1.33 , nglass =1.5 .)

[A: 440 nm .]

22.3 A light ray has a angle of refraction of 37◦ when sent
from air towards glass at a 60◦ angle of incidence. Determine
the index of refraction of the glass. [A: 1.45 .]

Problem 22.4
22.4 A prism with an apex angle of 90◦ is made of a trans-
parent plastic material with n=1.25 . A ray enters perpen-
dicularly from one face of the prism, as shown in the �gure
above. What is the minimum value of the angle α such that
the ray cannot exit from the hypotenuse? [A: 37◦ .]

22.5 Water and glass layers with parallel surfaces are super-
imposed in the �gure below. What will the angle of refraction
at the glass layer be for a ray that enters the water from the
air with an angle of incidence of 37◦ ? [A: 24◦ .]

Problem 22.5 and Problem 22.6

22.6 At what maximum angle can rays sent upward from
the glass layer in the �gure above pass on to the water layer?
(Hint: At the limit, the ray emerges into the air parallel to the
surface.) [A: 42◦ .]

Problem 22.7
22.7 What should the angle of incidence θ1 be such that the
light entering from the top face of the glass block shown in
the �gure with index of refraction n = 1.4 does not exit from

point B on the lateral surface? (Hint: What is the relation be-
tween the critical angle at point B and the angle of incidence
at point A?) [A: 78◦ .]

22.8 A �sh at the bottom of a 4 m deep lake looks upward
toward the surface of the water. What will be the radius of
the surface area from which this �sh can see incident rays?
(The index of refraction of water is 1.33 .) [A: 4.6 m .]

22.3 Image by Reflection - Mirrors

22.9 The focal length of a concave mirror is f =30 cm .
(a) Where will the image of an object 1 m in size placed 40 cm
away from the mirror form and what will its size and type
be? (b) Answer the same question for an object 1 m in size
placed 15 cm away.

[A: (a) q = 120 cm , real, inverted and 3 times larger. (b)
q = −30 cm , virtual, upright and 2 times larger.]

22.10 The focal length of a convex mirror is 10 cm . Where
will the image of an object 1 m in size placed 40 cm away
from the mirror form and what will its size and type be?

[A: q = −8 cm , virtual, upright and 5 times smaller.]

22.11 When an object is placed 25 cm in front of a concave
mirror, its image is inverted and 4 times enlarged. What is
the focal length of the mirror? [A: f = 20 cm .]

22.12 When an image is placed before a convex mirror with a
focal length of 40 cm , its image is upright and 4 times smaller.
What is the position of the object? [A: p = 120 cm .]

22.13 There is 90 cm in distance between an object and a
screen. At what distance from the object should a concave
mirror with a 24 cm focal length be placed such that a clear
image is obtained on the screen? [A: p = 30 cm .]

22.14 The image of an object placed before a convex mirror is
15 cm behind the mirror, upright and 4 times smaller. What
is the focal length of the mirror? [A: f = −20 cm .]

22.4 Image by Refraction - Lenses

22.15 The focal length of a thin converging lens is f = 30 cm .
(a) Where will the image of an object 1 m in size placed 90 cm
away from the lens form and what will its size and type be?
(b) Answer the same question for an object placed 10 cm
away.

[A: (a) q = 45 cm , real, inverted and triply diminished, (b)
q = −15 cm , virtual, upright and magni�ed 1.5 times.]

22.16 The focal length of a diverging lens is 20 cm . Where
will the image of an object 1 m in size placed 60 cm away
from the lens form and what will its size and type be?

[A: q = −15 cm , virtual, upright and 4 times diminished.]
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22.17 An object is placed 125 cm away from a screen. We
want to obtain the image of the object on the screen using a
converging lens with a focal length of 20 cm . How far away
from the object should the lens be placed?

[A: p = 25 cm and 100 cm .]

22.18 An object placed in front of a converging lens with a
focal length of 30 cm has an image that is inverted and twice
as large. Find the position of the object. [A: p = 45 cm .]

22.19 The image of an object placed before a converging
lens is 200 cm away, inverted and 4 times larger. What is the
focal length of the lens? [A: 40 cm .]

22.20 An object is placed 45 cm away from a screen. The
image obtained on the screen by a converging lens placed in
between is inverted and twice larger. What is the focal length
of the lens? [A: f = 10 cm .]

?
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WAVE OPTICS

The beautiful colors of this pea-
cock are actually not the colors
of its feathers. They result from
an e�ect called interference of
the light that results from the
structure of the feathers.

In geometric optics, light was considered as a ray propagating along a line.
This approach can be su�cient to obtain images with mirrors and lenses, but it
fails to explain many other properties of light. We can see all of the colors of the
rainbow on a soap bubble, on the surface of a compact disk or on the feathers of
a peacock. This is caused by the interference e�ects of the light wave.

Therefore, we need to dwell further on the wave structure of light. The two
most notable properties that distinguish a wave from a particle are its ability to
display interference and di�raction e�ects. These e�ects constitute the basis of
many techniques used in medicine and industry: X-rays, thin �lms, holography,
etc. In this chapter, we will discuss the interference and di�raction e�ects that
result from the wave properties of light.
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23.1 YOUNG’S DOUBLE-SLIT EXPERIMENT

In chapter 11, we discussed the fact that waves display interference e�ects.
When two waves superpose at a point at the same phase, they undergo constructive
interference and their amplitudes are added. If they superpose at opposite phases,
they undergo destructive interference, in other words, their amplitudes cancel each
other out.

Light, which is an electromagnetic wave, should also display interference
e�ects. However, it is very di�cult to observe the interference e�ect, because the
wavelength of light is very small (∼ 10−7 m ) and very precise experiments must
be conducted.

In 1801, the English scientist Thomas Young (1773-1829) was able to demon-
strate the interference of light experimentally. This setup, called Young’s double-
slit experiment, needs two sources emitting identical waves at the same phase
(Figure 23.1). For this purpose, an obstacle with two slits is placed in front of a

Figure 23.1: Young’s double-
slit experiment setup.

monochromatic (i.e., single wavelength) light source S. According to Huygens’
principle, after the light reaches these slits, two waves with the same phase will
be emitted from sources S 1 and S 2 .

When these two spherical waves arrive at a point on the screen, they will
produce constructive interference if they arrive with the same phase and cause
maximum illumination at that point. If they reach the screen at opposite phases,
they will produce destructive interference and that point will remain dark. There-
fore, dark and light interference fringes are observed on the screen.

Figure 23.2: Young’s experi-
ment. (a) The wave from a single
source generates two waves with
the same phase after the slits S 1
and S 2 . (b) Coordinates.

Now let us calculate the positions of the interference fringes in Young’s
experiment. In the diagram in Figure 23.2, the distance between the slits is
indicated with d and the distance of the screen is indicated with D . Let the
distances traveled by two waves to a point P on the screen at distance y from
the center O of the screen be r1 and r2 .

Let us draw a perpendicular line from the source S 1 to the path r2 and form
the right triangle S 1S 2B . If the screen is very far, in other words, if the paths
r1 and r2 are very large with respect to d , the side S 2B will be the di�erence
between the two paths. Considering the right triangle S 1S 2B , we get

S 2B = d sin θ

If this path di�erence is equal to integer multiples of the wavelength, in other
words, equal to any one of the values λ, 2λ, 3λ . . . , there is constructive interfer-
ence and a bright fringe appears at point P . Therefore, the angle θm of the mth

bright fringe will satisfy the following relation:

d sin θm = mλ (m = 0,±1,±2,±3 . . .) (Bright fringes) (23.1)
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However, if the path di�erence is equal to odd multiples of a half wavelength, in
other words, equal to any one of the values λ/2, 3λ/2, 5λ/2 . . . , there is destructive
interference and P is in a dark fringe:

d sin θm =
(
m + 1

2

)
λ (m = 0,±1,±2 . . .) (Dark fringes) (23.2)

In order to simplify this formula, let us consider the right triangle AOP formed
by drawing a line from the midpoint A of the slits in the �gure to P . As the two
sides of this triangle are perpendicular to two sides of the triangle S 1S 2B , they
are similar triangles and their angle θ is equal. For small angles, both the sine
and the tangent can be taken as equal to the radian value of the angle:

θm ≈ sin θm ≈ tan θm =
ym

D
(23.3)

This angle is used in the above expressions for dark and light fringes. We can
combine both cases into a single formula:

ym =


m
λD
d

(Bright)(
m + 1

2

) λD
d

(Dark)
(m = 0,±1,±2 . . .) (23.4)

Therefore, if the distance D of the screen, the distance d between the slits and
the wavelength λ of the used light are known, the type and number of fringes
at distance ym can be calculated. This experiment is actually mostly used to
measure the wavelength of light.

Example 23.1

In a Young’s experiment conducted with an Argon laser using
green light with a wavelength of 514 nm , the distance between
the slits is 0.1 mm and the screen is placed 3 m away.
(a) What is the distance between two bright fringes?
(b) What is the distance between the 3rd bright fringe and the

7th dark fringe?

Answer
(a) The positions of the bright fringes are given with Eq. (23.4):

ym = m
λD
d

Accordingly, we �nd the distance between two successive
fringes:

y2 − y1 =
λD
d

y2 − y1 =
514 × 10−9 × 3

0.1 × 10−3 = 0.015 m = 1.5 cm

(b) We write Eq. (23.4) for the 7th dark and 3rd bright fringes
and calculate the di�erence:

y7 − y3 = (7.5 − 3) ×
λD
d

= 4.5 × 1.5 = 6.8 cm

Example 23.2

In a Young’s experiment conducted with a ruby laser using red
light with a wavelength of 695 nm , the distance between the
slits is 0.1 mm .
(a) What is the angular di�erence between two bright fringes?
(b) How many bright fringes are there in an angular area of
±10◦ from the center?

Answer
(a) We use Eq. (23.1), which we developed for angular posi-
tions:

d sin θm = mλ

We use the value sin θm≈θm for small angles and calculate the
angular di�erence ∆θ between two successive maximums:

∆θ = θ2 − θ1 =
λ

d

∆θ =
695 × 10−9

0.1 × 10−3 = 0.007 radians

We convert this value into degrees by multiplying by 180/π :
∆θ = 0.007 × 180/π = 0.4◦

(b) After �nding the angle covered between two maximums,
we calculate the number of maximums within the given range:

N = 2 ×
10
0.4

= 50
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Example 23.3

In a Young’s experiment, two sources generating two di�erent
lights with wavelengths λ1 = 440 nm and λ2 = 695 nm are
used. The distance between the slits is 0.1 mm and the distance
from the screen is 5 m . What is the distance between the 6th
bright fringes of both types of light?

Answer
We use the formula (23.4) that gives us the positions of the

bright fringes:
ym = m

λD
d

We write this expression for both wavelengths at the same
maximum m=6 and calculate the di�erence in distance:

∆y6 = 6 (λ2 − λ1)
D
d

∆y6 = 6 (695 − 440) × 10−9 ×
5

0.1 × 10−3

∆y6 = 0.077 m = 7.7 cm

23.2 INTERFERENCE IN THIN FILMS

You can see all of the colors of the rainbow on soap bubbles and in oil slicks
on puddles of rainwater. This e�ect is caused by the interference of the light
re�ected from the front and rear surfaces of a thin �lm layer.

Let us consider a thin �lm layer with thickness t . As shown in Figure 23.3,
some of the light incident on this surface will get re�ected from the front surface
and the rest will get refracted and pass on to the second medium. When the ray
inside of the �lm reaches the back surface of the �lm, some of it will get re�ected
again and return to the front surface. This part of the returning ray that shoots
out into the air generates interference with the �rst re�ected ray.

Let us calculate this interference for a normal, in other words, perpendicular,
incident light on a thin �lm with refractive index n .

Figure 23.3: Two lights re-
�ected from a thin �lm layer.

Let us emphasize a very important point before starting the calculation: We
had discussed the following property when examining the re�ection and transfer
of waves in Chapter 10: When a wave is incident from a less dense medium to a
denser medium (n1<n2 ), the wave is re�ected with a phase di�erence of 180◦ , in
other words, as an inverted wave. This phase di�erence is observed only in the
re�ection of a wave going from a less dense medium into a denser medium, and
not in the reverse case.

According to this property, the �rst ray coming from the air and re�ected
from the �rst surface will get re�ected with a phase di�erence of 180◦ . However,
two di�erent cases can occur when the ray that passes inside of the �lm reaches
the back surface:
• If the �lm layer is denser than the rear medium (Figure 23.4):

In this case, no phase di�erence occurs in the second ray re�ected from this
surface and it gets re�ected as it is. Therefore, the phase di�erence between
the �rst and second rays is caused by two factors:
I The 180◦ phase di�erence from the �rst re�ection,
I The distance 2t taken when going back and forth in the �lm medium.

Figure 23.4: The phase di�er-
ence of the second light will
vary depending on whether the
�lm layer is more or less dens
than the rear medium.

The interference would have been destructive if there was only the 180◦

phase di�erence from the re�ection. However, the path di�erence from going
back and forth in the �lm medium shall be added to this. If the wavelength
of the light in air is λ , its wavelength in a medium with refractive index n is
λn = λ/n . Therefore, we should compare the path di�erence inside of the
�lm with this wavelength.
We reach the following conclusions considering that the phase di�erence is
caused by two e�ects:
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I The interference is constructive if the path di�erence 2t is equal to
half multiples of λn and the light at that wavelength is observed at
maximum magnitude:

2t = (m + 1
2 ) λn (m = 0, 1, 2 . . .) (Maximum) (23.5)

I The interference is destructive if the path di�erence 2t is equal to full
multiples of λn and the light disappears at that wavelength and is not
observed:

2t = m λn (m = 1, 2, 3 . . .) (Minimum) (23.6)

Note that these formulas are opposite to those in Young’s experiment. The
reason for this is that a phase di�erence of 180◦ from re�ection is added
here to the phase di�erence with the second wave.

• If the �lm layer is less dense than the rear medium (Figure 23.4):
In this case, a 180◦ phase di�erence will arise in the rays re�ected from both
the front and the rear surfaces. Therefore, the phase di�erences caused by
the surface e�ects will cancel each outer out and only the phase di�erence
from the path di�erence in the �lm medium will be taken into consideration.
In this case, we reverse Eqs. (23.5) and (23.6) that we found above for con-
structive and destructive interference. In other words, we use the maximum
(constructive interference) formula for the minimum (destructive interference).
This is the reason why various colors are observed on soap bubbles and on

Figure 23.5: The colors re-
�ected from a thin oil slick are
a result of interference.

oil slicks. The fact that, for example, the color blue is re�ected from a point of a
thin �lm re�ecting white light, is caused by the fact that all of the other colors
are canceled due to destructive interference.

Example 23.4

An oil slick with a refractive index of 1.5 is spread over a water
puddle (n = 1.33) . What is the minimum value of the oil
slick thickness such that the yellow light with a wavelength of
600 nm within the white light coming from air passes through
without getting re�ected?

Answer Only a phase di�erence of 180◦ will occur in the
�rst surface, because the refractive index of the oil slick is
greater than the water underneath. Also, passing through

without re�ection means destructive interference. Therefore,
the formula (23.6) should be used:

2t = m λn

If the path di�erence is equal to one wavelength for m=1 , it
shall be multiples of the wavelength for the other m values.
Also, in the oil medium, we take the wavelength as λm = λ/n :

2t = 1 ×
λ

n
→ t =

λ

2n
=

600
2 × 1.5

= 200 nm

Yellow light will not get re�ected at multiples of this thick-
ness.

Example 23.5

A thin transparent �lm with refractive index n=1.3 is spread
on a window glass with a refractive index of 1.5 . The thickness
of the �lm should be multiples of which value such that the
re�ected light does not contain red)? (Take the wavelength of
red light as 700 nm .)

Answer Two 180◦ phase di�erences will occur this time, as

the refractive index of the �lm layer is less than the refractive
index of the rear glass.
In this case, we must invert Eqs. (23.5-23.6) for destructive
interference of the red light:

2t = (m + 1
2 ) λn (Minimum)

We take m = 0 and λn = λ/n and calculate the thickness:
2t = 1

2 ×
λ

n
→ t =

λ

4n
=

700
4 × 1.3

= 135 nm



396 23. WAVE OPTICS

23.3 DIFFRACTION FROM A SINGLE SLIT

In geometric optics, light was considered as rays propagating in straight lines.
If this was correct, an obstacle placed in front of a source of light would have a
shadow with sharp edges. But this is not the case. If you closely examine the
shadow of a razor blade in Figure 23.6, you will notice that there are second, third,
etc., shadows on the sides. These are called di�raction fringes.

Di�raction is the general name given to the e�ects caused by the deviation
of light from its linear path. In addition to the double-slit experiment that we
discussed earlier, the wave nature of light can be observed even in the shadow of

Figure 23.6: Di�raction in the
shadow of a razor blade (Lecture
Demonstration Services, Har-
vard Science Center).

a single slit.
Let us consider the single-slit experiment so as to understand di�raction at

the simplest level. In the setup shown in Figure 23.7, a monochromatic light
emitted from a source passes through an obstacle with only a single slit and is
then projected onto a screen. On the screen, in addition to an image of the slit at
the center, we also observe weaker second, third, etc., slit images on both sides of
the center.

To understand the di�raction e�ect in this experiment, the width of the slit
should be taken into consideration. (The widths of the slits were ignored in
Young’s experiment.) Let us use Figure 23.8 to explain the di�raction fringes
formed by rays from a single slit with width a on a very distant screen.

Figure 23.7: Di�raction in a sin-
gle slit.

According to Huygens’s principle, secondary waves with the same phase are
generated at each point of a slit on which light is incident. It is clear that the
center of the screen will be bright, as all of these waves will reach the center in
the same phase.

Let us consider the �rst dark fringe right next to the center. As all light rays
reaching this dark fringe from various parts of the slit are very distant from the
screen, they will all have started with the same angle θ . Let us match every point
at the top half of the slit with a point at the bottom half.

As shown in Figure 23.8, the wave from the top point and the wave from
just below the central point (the two black circles in the �gure) should have
a phase di�erence of λ/2 , because they generate destructive interference on
the dark fringe on the screen. After these two points, the two points following
them in the top and bottom halves of the slit should also have a phase di�erence
of λ/2 . Therefore, all matching pairs of points will have a phase di�erence of

Figure 23.8: Two matching
(black) points in the top and bot-
tom half.

half a wavelength. As shown in Figure 23.8, as the path di�erence between two
matching waves is (a/2) sin θ , the condition for the �rst dark fringe is written as
follows:

a
2

sin θ =
λ

2
−→ sin θ =

λ

a
This method can be repeated by considering that the slit is divided into 4 parts,
6 parts, 8 parts, etc. It can be shown that the dark fringes will have the value
sin θ=2λ/a, 3λ/a , etc., each time. In conclusion, the position of dark fringes in
single-slit di�raction will ful�ll the following condition:

Figure 23.9: Di�raction fringes
in a single slit. sin θ = m

λ

a
(m = 1, 2, 3 . . .) (Condition for dark fringes) (23.7)

Likewise, we use the small angle approach to �nd the distances ym of the fringes
from the center on a screen located at distance D :

sin θ ≈ tan θ =
y

D
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ym = m
λD
a

(m = 1, 2, 3 . . .) (Positions of dark fringes) (23.8)

We can determine the positions of the bright fringes using a similar method:

ym =
(
m + 1

2
) λD

a
(m = 1, 2, 3 . . .) (Positions of bright fringes) (23.9)

Intensity of Light in Diffraction
The intensity of light varies gradually between dark and light areas in di�rac-

tion fringes. The calculation for the distribution of the resultant intensity of two
waves at a certain point is long and complex, and we shall therefore present it
here without proof. If we use I0 to indicate the intensity of light at the central
point θ = 0 , the expression for the light intensity at any angle is as follows:

I = I0

[
sin(πa sin θ/λ)
πa sin θ/λ

]2

(23.10)

Notice that this function also includes the condition for dark fringes. This curve
Figure 23.10: Distribution of
the intensity of light in di�rac-
tion fringes.is shown in Figure 23.10.

Example 23.6

A red light with a wavelength of 700 nm is sent through a
0.1 mm wide slit. A screen is located 5 m away.
(a) What is the position of the �rst dark fringe?
(b) What is the width of the bright area at the center?

Answer
(a) We use Eq. (23.8), which we found for dark fringes:

ym = m λD/a (m = 1, 2, 3 . . .)
We calculate for m = 1 :

y1 =
λD
a

=
700 × 10−9 × 5

0.1 × 10−3 = 0.035 m = 35 mm .

(b) The bright fringe at the center is limited by the �rst dark
fringes at both sides. Therefore, its width is 2 times the value
that we found in item (a):

∆y = 2 × y1 = 70 mm .

Example 23.7

A red light with wavelength λ1 = 700 nm and a green light
with wavelength λ2 = 650 nm are simultaneously sent through
a slit. On a screen that is 2 m away, the distance between the
5th dark fringe of the red light and the 3rd bright fringe of the
green light is observed to be 2 mm . Determine the width of the
slit.

Answer
Eq. (23.8) for dark fringes gives us, for m=5 of the red light:

y1(m=5) = 5
λ1D

a
Eq. (23.9) for bright fringes gives us, for m=3 of the green
light:

y2(m=3) =
(
3 + 1

2
) λ2D

a
We equate the di�erence between these two positions to
2 mm and solve for the unknown a :

y1(m=5) − y2(m=3) = 0.002

a =

(
5λ1 − 3.5λ2

)
D

0.002
= 0.0012 m = 1.2 mm

Resolution
The image formed formed in our eye or on photographic �lm by optical

instruments such as microscopes, telescopes or spectroscopes must be very sharp.
However, there is a limit to the ability of an instrument to distinguish between
objects that are close together, regardless of how perfectly it is manufactured.
This ability, limited by the di�raction of light, is called the resolution or the
resolving power of the instrument.

The limit of the resolution is caused by di�raction. Let us consider two light
sources S 1 and S 2 located near each other (e.g., two neighboring stars in the
sky). Let the rays from these two sources pass through a slit with width a and be
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Figure 23.11: (a) Two resolvable
images. (b) Two images on the
limit of resolution, (c) Two unre-
solvable images. Note that the
central maximum of one coin-
cides with the �rst minimum of
the other.

projected onto a screen. As we discussed in the topic of single-slit di�raction, the
image of each on the screen will show a distribution around a central maximum
(Figure 23.11). The centers of these two images become unresolvable if their
central maximums overlap.

The limit of resolution is accepted as the limit at which the central maximum of
one of the images coincides with the �rst minimum of the other image (Figure 23.11b).
We obtain the minimum angle θ at this limit using Eq. (23.8), which we obtained
for single-slit di�raction. The expression giving the �rst minimum was found to
be the following:

sin θ =
λ

a
We can take the angle (in radian) instead of the sine for small angles. Accordingly,
the smallest angle θmin that can be resolved by the optical instrument is:

θmin =
λ

a
(for rectangular slit) (23.11)

This formula is valid for a rectangular slit. The formula changes slightly when
calculated for the circular objective lenses of optical instruments:

θmin = 1.22
λ

a
(For circular slit) (23.12)

a is the diameter of the circle here.
The smaller the value of θm , the higher resolution of the instrument. Accord-

ingly, to increase resolution, we should either use light with a smaller wavelength
or increase the diameter of the objective lens.

Example 23.8

A camera is required to resolve two points separated by 1 cm at
a distance of 100 m in the photo that it shoots. As the average
wavelength is 500 nm within the visible light range, what is
the minimum value of the diameter of the objective lens?

Answer
We use Eq. (23.12) given for circular slits:

θmin = 1.22λ/a

The angle θmin here should be equal to the angle covered by
the width of 1 cm located 100 meters away:

θmin = 0.01/100 = 0.0001 radians
We use these values to calculate the diameter a of the circular
objective lens:

a = 1.22
λ

θmin
= 1.22 ×

500 × 10−9

0.0001
a = 0, 006 m = 6 mm

Problems

23.1 Young’s Double-Slit Experiment

23.1 In a Young’s experiment conducted with a ruby laser
using red light with a wavelength of 700 nm , the distance be-
tween the slits is 0.1 mm and the screen is placed 5 m away.

(a) What is the distance between two bright fringes? (b) What
is the distance between the 3rd bright fringe and the 5th dark
fringe? [A: (a) 3.5 mm , (b) 8.8 mm .]
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23.2 In a Young’s experiment conducted with a He-Cd laser
using red light with a wavelength of 450 nm , the distance be-
tween the slits is 0.1 mm . (a) What is the angular di�erence
between the fringes? (b) How many bright fringes are there
in an angular area of ±1◦ from the center?

[A: (a) 0.27◦ , (b) 7.8 ≈ 8 fringes.]

23.3 In a Young’s experiment, sources generating two lights
with wavelengths λ1 = 600 nm and λ2 = 650 nm are used.
The distance between the slits is 0.1 mm and the distance
from the screen is 3 m . What is the distance between the 5th
bright fringes of both types of light? [A: 7.5 mm .]

23.4 A Young’s experiment is designed with a light with a
700 nm wavelength such that the angle between the bright
fringes is 0.01◦ . What should the distance between the two
slits be? [A: 4 mm .]

23.5 The angle between the bright fringes is 2◦ in a Young’s
experiment. What will the angle be when this experimental
setup is placed under water with refractive index n = 1.33?
(Hint: Take the ratios and work with the wavelength in water.)

[A: 1.5◦ .]

23.2 Interference in Thin Films

23.6 An oil slick with a refractive index of 1.4 is located
on a puddle of water (n = 1.33) . What is the minimum

thickness of the oil slick such that red light with a wave-
length of 700 nm within the white light coming from air is
not re�ected? [A: 250 nm .]

23.7 A coat of thin �lm with refractive index n=1.3 is ap-
plied to an objective lens with a refractive index of 1.6 . The
thickness of the �lm should be multiples of which value such
that the re�ected light does not contain blue)? (Take the
wavelength of blue light as 400 nm .) [A: 77 nm .]

23.3 Diffraction from a Single Slit

23.8 A light with a wavelength of 600 nm is sent through a
0.1 mm wide slit. (a) On a screen 4 m away, what is the width
of the central area at the center? (b) What is the position of
the 7th dark fringe? [A:(a) 4.8 cm , (b) 17 cm .]

23.9 Two lights with wavelengths λ1=500 nm and
λ2=600 nm are simultaneously sent through a slit. On a
screen that is 3 m away, the distance between the 7th bright
fringe of the �rst light and the 5th dark fringe of the second
light is observed to be 3 mm . Determine the width of the slit.

[A: 2 mm .]

23.10 A telescope is required to resolve two points at a dis-
tance of 100 km and separated by 1 cm . As the average
wavelength is 500 nm within the visible light range, what is
the minimum value of the diameter of the telescope?

[A: 6.1 m .]



APPENDIX A. PHYSICAL CONSTANTS

�antity Symbol Value

Speed of light in vacuum c 2.997 92 × 108 m/s

Charge of electron e 1.602 19 × 10−19 C

Gravitational constant G 6.6726 × 10−11 N m2/kg2

Avogadro’s number NA 6.022 05 × 1023

Universal gas constant R

 8.31451 J/(mol K)

0.0820578 litre atm/(mol K)

Permittivity of vacuum ε0 8.854 187 × 10−12 C2/(N m2)

Coulomb force constant k = 1/(4πε0) 8.987 551 78 × 109 N m2/C2

Permeability of vacuum µ0 4π × 10−7 N/A2

Electron mass me 9.109 390 × 10−31 kg

Proton mass mp 1.672 623 × 10−27 kg

Neutron mass mn 1.674 929 × 10−27 kg

Planck constant h 6.626 18 × 10−34 J s

Bohr radius aB = ~2/(ke2me) 5.291 773 × 10−11 m

APPENDIX B. USEFUL MATHEMATICAL RELATIONS
Derivative Integral Trigonometry

d
dx

( f + g) =
d f
dx

+
dg
dx

∫
( f + g) dx =

∫
f dx +

∫
g dx sin2 α + cos2 α = 1

d
dx

( fg) = f
dg
dx

+ g
d f
dx

∫
f g′ dx = fg −

∫
g f ′ dx sin(−α) = − sinα

dx
dx

= 1
∫

dx = 1 cos(−α) = cosα

d
dx

xn = nxn−1
∫

xn dx =
xn+1

n + 1
sin 2α = 2 sinα cosα

d
dx

ln x =
1
x

∫
dx
x

= ln x cos 2α = cos2 α − sin2 α = 2 cos2 α − 1

d
dx

ex = ex
∫

ex dx = ex tan 2α =
2 tanα

1 − tan2 α
d
dx

sin x = cos x
∫

sin x dx = − cos x sin(α ± β) = sinα cos β ± cosα sin β

d
dx

cos x = − sin x
∫

cos x dx = sin x cos(α ± β) = cosα cos β ∓ sinα sin β

d
dx

tan x =
1

cos2 x

∫
tan x dx = − ln |cos x| Law of Cosines: a2 = b2 + c2 − 2bc cos A

d
dx

cot x = −
1

sin2 x

∫
cot x dx = ln |sin x| Law of Sines: a

sin A
=

b
sin B

=
c

sin C

401© Springer Nature Switzerland AG 2020 

B. Karaoglu, Classical Physics, https://doi.org/10.1007/978-3-030-38456-2

https://doi.org/10.1007/978-3-030-38456-2


402

C. TRIGONOMETRIC TABLE
For angles greater than 45°, use the right-hand column together with the bottom labels.

Degree Radian Sin Cos Tan Cot ⇐=

00 0.000 0.000 1.000 0.000 ∞ 1.571 90
01 0.018 0.018 1.000 0.018 57.290 1.553 89
02 0.035 0.035 0.999 0.035 28.636 1.536 88
03 0.052 0.052 0.999 0.052 19.081 1.518 87
04 0.070 0.070 0.998 0.070 14.301 1.501 86
05 0.087 0.087 0.996 0.088 11.430 1.484 85
06 0.105 0.105 0.995 0.105 9.514 1.466 84
07 0.122 0.122 0.993 0.123 8.144 1.449 83
08 0.140 0.139 0.990 0.141 7.115 1.431 82
09 0.157 0.156 0.988 0.158 6.314 1.414 81
10 0.175 0.174 0.985 0.176 5.671 1.395 80
11 0.192 0.191 0.982 0.194 5.145 1.379 79
12 0.209 0.208 0.978 0.213 4.705 1.361 78
13 0.227 0.225 0.974 0.231 4.332 1.344 77
14 0.244 0.242 0.970 0.249 4.011 1.327 76
15 0.262 0.259 0.966 0.268 3.732 1.309 75
16 0.279 0.276 0.961 0.287 3.487 1.292 74
17 0.297 0.292 0.956 0.306 3.271 1.274 73
18 0.314 0.309 0.951 0.325 3.078 1.257 72
19 0.332 0.326 0.946 0.344 2.904 1.239 71
20 0.349 0.342 0.940 0.364 2.748 1.222 70
21 0.367 0.358 0.934 0.384 2.605 1.204 69
22 0.384 0.375 0.927 0.404 2.475 1.187 68
23 0.401 0.391 0.921 0.425 2.356 1.169 67
24 0.419 0.407 0.914 0.445 2.246 1.152 66
25 0.436 0.423 0.906 0.466 2.145 1.135 65
26 0.454 0.438 0.899 0.488 2.050 1.117 64
27 0.471 0.454 0.891 0.510 1.963 1.100 63
28 0.489 0.470 0.883 0.532 1.881 1.082 62
29 0.506 0.485 0.875 0.554 1.804 1.065 61
30 0.524 0.500 0.866 0.577 1.732 1.047 60
31 0.541 0.515 0.857 0.601 1.664 1.030 59
32 0.559 0.530 0.848 0.625 1.600 1.012 58
33 0.576 0.545 0.839 0.649 1.540 0.995 57
34 0.593 0.559 0.829 0.675 1.483 0.977 56
35 0.611 0.574 0.819 0.700 1.428 0.960 55
36 0.628 0.588 0.809 0.727 1.376 0.943 54
37 0.646 0.602 0.799 0.754 1.327 0.925 53
38 0.663 0.616 0.788 0.781 1.280 0.908 52
39 0.681 0.629 0.777 0.810 1.235 0.890 51
40 0.698 0.643 0.766 0.839 1.192 0.873 50
41 0.716 0.656 0.755 0.869 1.150 0.855 49
42 0.733 0.669 0.743 0.900 1.111 0.838 48
43 0.751 0.682 0.731 0.933 1.072 0.820 47
44 0.768 0.695 0.719 0.966 1.036 0.803 46
45 0.785 0.707 0.707 1.000 1.000 0.785 45

Cos Sin Cot Tan Radian Degree
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Index

absolute error, 5
acceleration, 27

centripetal, 47
relative, 49
tangential, 47

acceleration vector, 41
adhesion force, 188
adiabatic process, 223
ammeter, 313
Ampère’s law, 340
ampere (unit of current), 302, 338
amplitude, 145
angular acceleration, 115
angular frequency, 145
angular kinematics, 114–117
angular momentum, 128
angular position, 114
angular velocity, 115
anomalous behavior of water, 206
Archimedes’ buoyant force, 186
atom

closed shell, 242
free electron, 242
magnetic dipole moment, 342
structure, 242

average acceleration, 27
average acceleration vector, 41
average velocity, 25
average velocity vector, 40
Avogadro’s Number, 210

Bernoulli’s equation, 192
Biot-Savart law, 332

calorie (cal), 202
capacitance, 284
capacitor, 284–290

cylindrical, 285
energy, 290
in parallel, 287
in series, 288
parallel-plate, 284, 285
spherical, 286

capillarity, 188
Carnot cycle, 233
center of mass, 104–105
centripetal acceleration, 47, 69, 117
centripetal force, 69
charge density, 250
circular motion, 45, 69

centripetal acceleration, 47
tangential acceleration, 47

coe�cient of linear expansion, 205
cohesion force, 188
collisions, 99–101

elastic, 99
inelastic, 100
one dimension, 99
totally inelastic, 101
two dimensions, 102

commutator, 326
compression ratio, 230
concave mirror, 376
concave mirror equation, 377
conduction, 208
conductor, 241
conductors, 264

equipotential surface, 277
conservation of angular momentum,

129
conservation of charge, 240
conservative force, 85
constructive interference, 167

contact angle, 188
convection, 209
converging lens, 381, 382
convex mirror, 378
coordinate system, 10
coulomb (unit of charge), 241
Coulomb’s constant k , 243
Coulomb’s law, 242
critical angle, 372
Critically damped, 154
Curie temperature, 345
current, 301–304
cycle, 229

Carnot, 233
Diesel, 232
Otto, 229

cylindrical capacitor, 285

dam wall, 183
damped harmonic motion, 153
damping coe�cient, 154
density, 180
diamagnetism, 344
dielectric, 291–293
dielectric constant (κ ), 292
dielectric strength, 293
Diesel cycle, 232
di�raction, 396–398

fringes, 396
intensity of light, 397

di�raction fringes, 396
dimension, 1
diopter, 382
direct current circuit, 307–309

energy, 309
power, 309

dispersion, 373
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dispersion of light, 373
displacement, 24
displacement vector, 40
Doppler e�ect, 172–174
drift speed, 303
driven harmonic motion, 155

resonance, 155

Earth’s magnetic �eld, 345
eddy currents, 357
e�ciency, 229
elastic potential energy, 86
electric charge, 240–241

electron, 241
electric current, 301–304

biological impacts, 303
electric dipole, 248, 275, 291
electric dipole moment, 291
electric dipole potential, 275
electric �eld, 244–250

conductors, 264
dipole, 248
�eld lines, 246
point charge, 245

electric �ux, 258
electric motor, 325
electric permittivity ε0 , 243, 292
electric potential

conductors, 277
constant electric �eld, 272
dipole, 275
equipotential surface, 277
gradient, 278
point charge, 273

electric potential energy, 270
electromagnetic wave, 162
electromotive force (emf), 307
electron charge, 241
electrostatic force, 242
emf (electromotive force), 307
equation of continuity, 191
equation of state, 211
equation of state for ideal gas, 211
equipotential surface, 277
escape velocity, 90
eye, 384

astigmatism, 385
farsightedness, 385
near point, 385
nearsightedness, 385

farad (capacitance unit), 284
Faraday’s law, 352
ferromagnetism, 344

hysteresis curve, 345

remanence, 345
saturation, 345

�rst condition of equilibrium, 136
�rst law of thermodynamics, 220
�ow rate, 190
force, 57
free electron, 242
free fall, 32
free-body diagram, 64
frequency, 146
friction force, 62–63
fundamental frequency, 170

galvanometer, 313
gamma rays, 369
gauge pressure, 183
gauss (unit of magnetic �eld), 321
Gauss’s law, 258–260
generator, 355
gravitational acceleration, 31
gravitational potential energy, 86, 87

harmonic motion
damped, 153
driven, 155
physical pendulum, 152
simple, 143–150
simple pendulum, 151

harmonics, 169
heat, 202
heat engine, 229

e�ciency, 229
heat transfer, 207

conduction, 208
convection, 209
radiation, 209

heat transfer coe�cient, 208
Helmholtz coils, 348
Hooke’s law, 81
horsepower (HP), 82
Huygens-Fresnel principle, 370
hydrostatic pressure, 181, 192
hysteresis curve, 345

ideal gas, 210–211
assumption, 211
equation of state, 211
internal energy, 227
monatomic, 227
root-mean-square speed, 228
speci�c heat, 222

image
real, 375
virtual, 375

Impulse, 96
impulse-momentum theorem, 96

index of refraction, 371
induced surface charge, 292
inductance, 359
inertia, 57
inertial reference frames, 58
infrared rays, 369
instantaneous axis of rotation, 127
insulator, 241
interference, 392–395

thin �lm, 394
Young’s experiment, 392

interference fringes, 392
internal combustion engine, 229
internal energy, 220

ideal gas, 222, 227
internal resistance, 307
International System of Units (SI), 2

kilogram, 3
meter, 3
second, 3

joule (unit of work), 78

kilogram, 3
kinetic energy, 83

rotational motion, 126

laminar �ow, 190
latent heat, 203

fusion, 203
vaporization, 203

law of conservation of energy, 88
law of conservation of momentum, 98
law of gravitation, 60
laws of re�ection and refraction, 371
lens

converging, 381
diverging, 382
magni�cation, 382

lens makers’ equation, 382
lens power D , 382
Lenz’s law, 353
light

dispersion, 373
electromagnetic wave, 368
laws of re�ection and refraction,

371
plane wave, 370
ray model, 369
wave front, 369
wave nature, 368

lightning, 294
longitudinal wave, 162

magnetic dipole, 335
magnetic dipole moment, 325
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magnetic domains, 345
magnetic �eld

circular loop, 335
Earth, 345
in�nite wire, 334
magnetic dipole, 335
solenoid, 341
toroid, 341

magnetic �eld strength vector ~H , 343
magnetic force, 320, 323

parallel currents, 338
magnetic permeability µ , 344
magnetic permeability of free space

µ0 , 332
magnetic susceptibility χm , 344
magnetic torque, 324
magnetization, 343
magni�cation, 382
manometer, 182
margin of error, 5
mass spectrograph, 322
mechanical wave, 162
meter, 3
microscope, 385
microwave, 369
mirror

concave, 376
convex, 378
plane, 375

molar mass M , 210
mole, 210
moment (torque), 118
moment of inertia, 121, 123
momentum, 96
motion

circular, 45
constant acceleration, 28
constant angular acceleration,

115
free fall, 32
projectile motion, 42
relative, 48
rolling, 126
wave, 162

motion of center of mass, 107
motion with constant acceleration, 28

velocity formula without time,
29

motion with constant angular accel-
eration, 115

mutual inductance, 358

natural frequency, 155, 170
near point, 385
newton (N) unit of force, 57

Newton’s �rst law, 56
Newton’s laws, 55–59

The �rst law, 56
The second law, 57
The third law, 58

Newton’s second law, 57
Newton’s third law, 58
nonconservative force, 85
normal reaction force, 61

Ohm’s law, 305
Otto cycle, 229

parallel axis theorem, 124
parallel-plate capacitor, 284, 285
paramagnetism, 344
Pascal’s principle, 182
period, 47, 145
periodic wave, 162
phase angle, 150
phase change, 203
physical pendulum, 152

period formula, 153
Pitot tube, 193
plane mirror, 375
plane wave, 370
point charge, 245
polar molecules, 291
polarization, 292
position, 24
position vector, 40
potential energy, 84–87

elastic, 86
electric, 270
gravity, 86, 87

potential gradient, 278
potential of point charge, 273
potentiometer, 313
power, 82
pressure, 180

gauge, 183
hydrostatic, 181
kinetic calculation, 225

pressure gauge, 182
pressure units

atmosphere, 181
bar, 181
height of mercury, 181
millibar, 181

projectile motion, 42
trajectory equation, 43

radian (unit of angle), 115
radiation, 209
radio waves, 368
rainbow, 373

rays, 369
re�ection and transmission of waves,

170
relative acceleration, 49
relative error, 5
relative motion, 48–50
relative velocity, 49

addition rule, 49
resistance, 305
resistivity, 305

change with temperature, 306
temperature coe�cient, 306

resistor
in parallel, 311
in series, 310

resolution, 397
resonance, 155, 362

natural frequency, 155
right-hand rule, 16
rigid body, 113
rigid body motion, 121
RLC circuit, 361
rocket motion, 107, 108
rolling motion, 126
root-mean-square speed, 228
rotational kinetic energy , 126
round o� rule, 6

scalar product, 14
second, 3
second condition of equilibrium, 136
second law of thermodynamics, 232
shock wave, 174
signi�cant �gures, 6
simple harmonic motion, 143–150

acceleration, 147
di�erential equation, 144
energy, 149
equation, 145
phase angle, 150
velocity, 147

simple pendulum, 151–152
sinusoidal wave, 164
Snell’s law, 371
solenoid, 341
speci�c heat, 202

ideal gas, 222
speed of light, 370
speed of sound, 163
spherical capacitor, 286
spin, 342
spin magnetic moment, 343
spring constant, 81
standing wave, 168

antinode, 169
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fundamental frequency, 170
harmonics, 169
natural frequency, 170
node, 169

state variables, 200
static equilibrium, 135–137

�rst condition, 136
second condition, 136

steady �ow, 190
Stefan-Boltzmann law, 209
Stokes’ law, 190
superposition principle, 166
surface tension, 187
surface tension coe�cient, 187

tangential acceleration, 47, 117
telescope, 386
temperature, 200
temperature gradient, 208
temperature scale

celsius ( ◦C ), 201
fahrenheit ( ◦F ), 201
kelvin (K ), 201

tension force, 64
terminal voltage, 308
tesla (unit of magnetic �eld), 321
thermal expansion, 205
thermodynamic equilibrium, 200
thermometer

gas, 200
mercury, 200
thermocouple, 201

thin lens equation, 382
timbre, 170
toroid, 341
torque (moment), 118
Torricelli’s formula, 193
total internal re�ection, 372
total mechanical energy, 88
trajectory equation, 43
transformer, 356

transverse wave, 162
triple point of water, 201
turbulent �ow, 190

ultraviolet rays, 369
uniform circular motion, 45
uniform linear motion, 29
unit of electric charge, 241
unit vectors, 12
units, 2
universal gas constant R , 211
universal gravitational constant, 60

van de Graa� generator, 293
van der Waals force, 187
vector, 8–18

addition, 8
components, 10
scalar product, 14
unit vectors, 12
vector product, 16

vector addition
parallelogram rule, 8
triangle rule, 8
using components, 13

vector product, 16
velocity, 25
velocity formula without time, 29
velocity vector, 40
Venturi tube, 192
virtual image, 375
viscosity, 189
viscosity coe�cient, 189
visible light, 369
volt (unit of potential), 271
voltmeter, 313

watt (power unit), 82
wave amplitude, 164
wave front, 369
wave function, 163
wave interference, 166

wave motion, 162–175
amplitude, 164
constructive interference, 167
destructive interference, 167
Doppler e�ect, 172–174
function, 163
interference, 166
longitudinal wave, 162
periodic, 162
pulse, 162
re�ection and transmission, 170
shock wave, 174
sinusoidal, 164
standing, 168
transverse wave, 162

wave pulse, 162
wave speed, 162

electromagnetic, 163
liquid, 163
sound, 163
string, 163

wavelength, 164
wavenumber, 165
weight, 59
work, 78–81

adiabatic, 224
performed by gas, 218
scalar product expression, 78
spring force, 81
variable force, 79

work performed by gas, 218
at constant pressure (isobaric),

218
at constant temperature (isother-

mal), 219
at constant volume, 219

work-energy theorem, 83

X-rays, 369

Young’s double-slit experiment, 392
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